Definition. The number of non-zero rows of the row echelon form of a matrix is called the *rank of the matrix*. Question 1.¹ (3 marks) Complete the following sentences with the word must, might or, cannot, as appropriate.

- a. If the 3 × 3 coefficient matrix of the system $A\mathbf{x} = \mathbf{b}$ has a rank of 2, then the system _____ be inconsistent when $\mathbf{b} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.
- b. Given an $n \times n$ matrix A. If the system $A\mathbf{x} = \mathbf{b}$ is inconsistent for some $\mathbf{b} \in \mathbb{R}^n$, then the system $A\mathbf{x} = \mathbf{0}$ have non-trivial solutions.
- c. For any invertible matrix A, the rank of A _____ be the same as the rank of A^2 .

Question 2. (3 marks) Given the following system $\begin{cases} x = a \\ 2x + y = b \\ z = c \end{cases}$ a. Find the inverse of the \tilde{z}

- a. Find the inverse of the coefficient matrix.
- b. For which value(s), if any, of a, b, c is the system consistent, justify.
- c. Solve the system using the inverse for the value(s), if any, found in part b.

Question 3.¹ (4 marks) A matrix A is said to be skew-symmetric if $A^T = -A$. Given that $n \times n$ matrices A and B are skew-symmetric and AB = -BA, show that matrix AB must also be skew-symmetric.

Question 4. Determine whether the following statements are true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. (3 marks) If B is a square matrix satisfying AB = I, then $B = A^{-1}$.

b. (2 marks) If A^2 is a symmetric matrix, then A is a symmetric matrix.

¹From John Abbott Final Examinations.