Question 1.¹ (1 mark per blank) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

a. If A is a product of elementary matrices, then det(A) ______ equal zero.

b. Let A be a 3×3 matrix, and let B be a 4×4 matrix. If the leading ones of the RREF of A is equal to those of the RREF of B, then det(A) ______ equal zero and det(B) ______ equal zero.

Question 2.¹ (1 mark per blank) Let A and B be invertible $n \times n$ matrices. Complete each of the following sentences with MUST, MIGHT, or CANNOT.

- a. A + B _____ be invertible.
- b. $A^T A$ _____ be invertible.

Question 3. (1 mark per blank) Given A an $n \times n$ matrix and k a non-zero scalar.

a. If A is an elementary matrix obtained by interchanging two rows then det(A) =_____.

b. If A is the reduced row echelon form of an invertible matrix then det(A) =_____

c. If A is a singular matrix then det(A) = _____

- d. If A is an elementary matrix obtained by adding k times one row to an other then det(A) =______
- e. If A is an elementary matrix obtained by multiplying one row by k then det(A) =_____.

f. If A is the identity matrix multiplied by k then $det(A) = _$

Question 4.¹ Suppose A is an $n \times n$ matrix such that det(A) = 5 and $det(2A^T) = 40$.

a. (3 marks) Find n.

b. (2 marks) Find det(adj(3A)).

Question 5.¹ (5 marks) Given that det $\begin{pmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 10$ and $A = \begin{bmatrix} 3g + a & 3h + b & 2 & 3i + c \\ d + 2a & e + 2b & 3 & f + 2c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0 \end{bmatrix}$

- a. (5 marks) Find det(A).
- b. (3 marks) Using Cramer's Rule find x_1 and x_3 for $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 2a & 3a & 4a & 5a \end{bmatrix}^T$

Question 6. (2 marks) Prove: If the entries in each row of an $n \times n$ matrix A add up to zero, then the determinant of A is zero.

¹ From or modified from a John Abbott final examination

Question 7. Given
$$A^{-1} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ -1 & 0 & 0 & 1 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & 5 & 1 \end{bmatrix}$$
.

a. (5 marks) Find det(A).

b. (2 marks) Find $\operatorname{adj}(A)$.

Question 8.¹ (3 marks each) Determine whether the following statements are true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

- a. If A is a symmetric $n \times n$ matrix where n is even then $\det(A) = 0$.
- b. If A is a skew-symmetrix $n \times n$ matrix where n is odd then det(A) = 0.

Bonus Question. (2 marks) Find det(A) where

	[1	2	0]
A =	1	1	2
	2	0	2

given that the numbers are \mathbb{Z}_3 instead of \mathbb{R} . Operations on the numbers of \mathbb{Z}_3 can be defined by the following Cayley tables:

+	0	1	2	×	0	1	2
0	0	1	2	0	0	0	0
1	1	2	0	1	0	1	2
2	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0	1	2	0 0 0	2	1