Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show and justify all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Formulae:

$$\sum_{i=1}^{n} c = cn \text{ where } c \text{ is a constant } \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

- a. Calculus III **Myst** be extremely fun.
- b. Suppose f(x) be a continuous odd function on the interval [-2,2] then $\int_{-1}^{2} f(x) dx$ might be equal to zero.
- c. The mean value theorem for integrals states that if f(x) is continuous on [a,b] then there _must____ exists a number c in [a,b] such that $\int_a^b f(x) dx = f(c)(b-a)$.
- d. $\int_a^b f(x) dx$ might be equal to $\lim_{n\to\infty} \sum_{i=1}^n f(x_i) \Delta x$ where $\Delta x = (b-a)/n$ and $x_i = a + i\Delta x$.
- e. $\int_a^b f(x) \ dx$ m vit be equal to $\int_a^b f(\alpha) \ d\alpha$.

Question 2. (2 marks) Suppose $a_m, a_{m+1}, \ldots, a_n$ and k are real numbers, prove $\sum_{i=1}^{n} k a_i = k \sum_{i=1}^{n} a_i$.

$$[HS = \sum_{i=m}^{\infty} ka_{i}]$$

$$= ka_{m} + ka_{m+1} + \dots + ka_{m}$$

$$= k(a_{m} + a_{m+1} + \dots + a_{n})$$
Question 3a. (2 marks) State the entire Fundamental Theorem of Calculus (FTC).
$$= k \sum_{i=m}^{\infty} a_{i} = k HS$$

- 1. Sof(x)dx = F(b) F(a) where F(x) is an antiderivative.
- 2. de [safffidt] = f(x) where a GR

Question 3b. (2 marks) As seen in class the Net Change Theorem is an application of a part of the FTC. Explain the Net Change Theorem using an example.

The net change in y for F(x) from -I to I is equal to SIF(x) dx.

- a. (5 marks) Find an approximation of the definite integral of f(x) on the interval [-4,2], using the left endpoint as sample points and 4 approximating rectangles. Draw the approximating rectangles. Is the approximation an overestimate or underestimate? Justify.
- b. (2 marks) Evaluate $\int_{-4}^{2} f(x) dx$.
- c. (4 marks) Evaluate $\lim_{n\to\infty}\sum_{i=1}^{n} \left(\frac{i}{n} + f\left(-4 + \frac{6i}{n}\right)\right) \frac{6}{n}$.

a)
$$0 \times = \frac{b-a}{n} = \frac{2-(4)}{4} < 1.5$$

 $x : -4 + (0x = -4 + (1.5))$

$$\int_{-9}^{6} f(x) dx \approx f(x, 1) dx + f(x, 1) dx + f(x, 2) dx + f(x, 3) dx + f(x, 3)$$

a) $0 \times = \frac{b-a}{m} = \frac{2-(4)}{4} = 1.5$ $\int_{-4}^{2} f(x) dx \approx f(x_i) dx + f(x_i) dx + f(x_i) dx + f(x_i) dx + f(x_i) dx$ = (-2) k + (-2

b)
$$\int_{-4}^{2} f(x)dx = -2(3) - \frac{2(1)}{2} + \frac{2(2)}{2} = -4$$

c)
$$\lim_{n\to\infty} \sum_{i=1}^{n} \left(\frac{1}{n} + f(-4+6i)\right) \frac{6}{n}$$

=
$$\lim_{n\to\infty} \left[\frac{3(n+1)}{n} + \frac{1}{n} \right]$$

= $3 + \lim_{n\to\infty} \left[\frac{4(n+1)}{n} + \frac{1}{n} \right]$

=
$$\lim_{N\to\infty} \left[\frac{6}{N^2} \sum_{i=1}^{N} + \sum_{i=1}^{N} f(-4+6i) \frac{6}{N} \right]$$

= $\lim_{N\to\infty} \left[\frac{6}{N^2} \frac{M(N+1)}{2} + \sum_{i=1}^{N} f(-4+6i) \frac{6}{N} \right]$
= $\lim_{N\to\infty} \left[\frac{3}{N} \frac{M+1}{N} + \sum_{i=1}^{N} f(-4+6i) \frac{6}{N} \right]$
= $\frac{3}{N} + \frac{1}{N} \sum_{i=1}^{N} \frac{f(-4+6i) \frac{6}{N}}{N}$
= $\frac{3}{N} + \frac{1}{N} \sum_{i=1}^{N} \frac{f(-4+6i) \frac{6}{N}}{N}$

Question 4. Given the function

$$f(x) = \frac{1}{2} \int_{x}^{x^2} \frac{\arctan(\ln t)}{t} dt.$$

a. (5 marks) Evaluate f(x).

b. (5 marks) Determine whether f(x) is a solution to the initial value problem (IVP) given below

$$y' = \arctan(2\ln x), \quad y(\sqrt{e}) = 0.$$

or)
$$f(x) = \frac{1}{2} \int_{\frac{\pi}{4}}^{x^2} \frac{avctan (nt) dt}{t}$$
 $z = \ln t$
 $dz = \frac{1}{4}dt$
 $z(x^2) = \ln x^2$
 $z(e) = \ln (e) = 1$
 $z = \frac{1}{2} \left[uv \right]_{1}^{1 + x^2} - \int_{1}^{1 + x^2} \frac{dz}{z}$
 $v = z$
 $z = \frac{1}{2} \left[z avctan z \right]_{1}^{1 + x^2} - \frac{1}{2} \left[\frac{1}{2} \ln |1 + z^2| \right]_{1}^{1 + x^2}$
 $z = \frac{1}{2} \left[z avctan z \right]_{1}^{1 + x^2} - \frac{1}{2} \left[\frac{1}{2} \ln |1 + z^2| \right]_{1}^{1 + x^2}$
 $z = \frac{1}{2} \left[x avctan (\ln x^2) - \frac{1}{2} \ln (1 + \ln x^2) + \frac{1}{4} \ln (1 + \ln x^2) - \frac{1}{4} \ln (1 + \ln$

10) Nore
$$f(x)$$
 satisfy the differential equation ?

 $y' = f'(x) = \frac{1}{dx} \left[h(g(x)) \right]$
 $= h'(g(x))g'(x)$

where $h(x) = \frac{1}{2} \int_{e}^{x} \frac{avotan(Int)}{t} dt$

and $h'(x) = \frac{1}{2} \frac{avotanx}{x}$ by the 2nd FTC

and $g(x) = x^{2}$
 $g'(x) = 2x$
 $y' = \frac{1}{4} \frac{avotan}{x^{2}} \frac{(\ln x^{2})}{x^{2}}$
 $= \frac{avotan}{(2\ln x)}$

Does it satisfy the initial condition

 $y'(x) = \frac{(vx)^{2}}{x^{2}} \frac{avotan(Int)}{t} dt$
 $= \int_{e}^{e} \frac{avotan(Int)}{t} dt$
 $= 0$
 $f(x)$ is an solution to the differential equation and initial condition.

Question 5. (5 marks) Find the average of the function $f(x) = |\tan^3(x)\sec^3(x)|$ on $[-\pi/6, \pi/6]$.

OLVBY. Varior of function =
$$\frac{1}{b-a} \int_{0}^{b} f(x) dx$$

$$= \frac{1}{II - (II)} \int_{-II}^{II} |tan^{3}(x) \sec^{3}(x)| dx$$

$$= \frac{1}{II} \int_{0}^{II} |tan^{3}(x) \sec^{3}(x)| dx$$

$$= \frac{1}{II} \int_{0}^{III} |tan^{3}(x) e^{3}(x) dx$$

$$= \frac{1}{II} \int_{0}^$$

Question 6. ¹ (5 mark each) Evaluate the following integrals:

Let
$$u = e^{-x}$$

$$du = e^{-x}dx$$

$$u(1) = e^{-x}dx$$

$$= \int_{1}^{1/2} \sqrt{1 - (u - 1)^{2}} du$$

$$= -\left[(u^{2} - 2u + 1) - 1 \right]$$

$$= \left[(u - 1)^{2} - 1 \right]$$

 $^{^1\}mathrm{From}$ or modified from a John Abbott final examination

$$\int \frac{x^3 + x^2 + x + 2}{(x+1)(x^2+1)} \, dx$$

Note the above rational function is improper.

$$(x+1)(x^2+1) = x^3+x+x^2+1 = x^3+x^2+x+1$$

$$\frac{1}{(x+1)(x^2+1)} = \frac{A}{X+1} + \frac{BX+C}{X^2+1}$$

$$\frac{1 (x+1)(x+1)}{(x+1)(x+1)} = \frac{A(x+1)(x+1)}{x+1} + \frac{(Bx+c)(x+1)(x+1)}{x+1}$$

$$| = A(x^{2}+1) + (Bx+C)(x+1)$$

Let
$$x = 1$$

$$1 = A((1)^{2}+1) + (B(1)+C)(1+1)$$

$$1 = \frac{1}{2} \cdot 2 + (B(1)+\frac{1}{2})^{2}$$

$$= \int 1 dx + \int$$

$$= \int |dx + \int \frac{y_2}{x+1} + \frac{1}{2} \frac{x+\frac{1}{2}}{x+1} dx$$

$$= x + \frac{1}{2} \ln |x+1| - \frac{1}{2} \int \frac{x}{x^2+1} dx + \frac{1}{2} \int \frac{1}{x^2+1} dx$$

$$= x + \frac{1}{2} \ln |x+1| - \frac{1}{4} \ln (x^2+1) + \frac{1}{2} \arctan x + C$$

$$= x + \frac{1}{2} \ln |x+1| - \frac{1}{4} \ln (x^2+1) + \frac{1}{2} \arctan x + C$$

Bonus Question. (5 marks) Use the following integral

$$\int_0^1 \frac{x^4 (1-x)^4}{1+x^2} dx$$

to show that $\pi < \frac{22}{7}$.