Dawson College: W	Vinter 2022:	Calculus II (SCIENCE):	201-NYB-05-S1:	Test 3.	part 1 of 3	name:
		(.0 01-11)		,	r	

Books, watches, notes or cell phones are **not** allowed. The **only** calculators allowed are the Sharp EL-531**. You **must** show and justify all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

- a. If a_n and b_n are divergent, then $a_n + b_n$ ______ be divergent.
- b. If $a_n > 0$ and $\lim_{n \to \infty} (a_{n+1}/a_n) < 1$ then $\lim_{n \to \infty} a_n$ ______ be equal to zero.
- c. If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ be convergent.
- d. A bounded sequence _____ converge.
- e. If $\sum c_n x^n$ diverges when x=2, then it ______ diverge when x=1.

Question 2. (5 marks) Find the sum of the following series:

$$\sum_{n=2}^{\infty} \left[\operatorname{arcsec}(n) - \operatorname{arcsec}(n+1) \right]$$

Question 3.¹ (3 marks) Let $\sum_{n=1}^{\infty} a_n$ be a series whose n^{th} partial sum is given by $S_n = \frac{2n+1}{n+2}$. Find a_9 .

¹Modified from a John Abbott final examination

Question 4.²

- a. (1 mark) Show that $0 < \frac{(n!)^2}{(2n)!} < 1$ when $n \ge 1$.
- b. (3 marks) Use part (a) (whether or not you have shown it) to determine if the following sequence converges or diverges. If it converges, find its limit.

$$a_n = \frac{(n!)^2}{(2n+1)!}, \qquad n \ge 1.$$

 $^{^2{\}rm From}$ a Dawson College final examination

Dawson College: Winter 2022: Calculus II (SCIENCE): 201-NYB-05-S1: **Test 3, part 2 of 3** name: _____

Question 5. (5 marks) Find the interval of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{4^n \sqrt[5]{n+3}}$$

Dawson College: Winter 2022: Calculus II (Science): 201-NYB-05-S1: **Test 2, part 3 of 3** name: _____

Question 8. (10 marks) Determine whether the following series is absolutely convergent, conditionally convergent, or divergent:

$$\sum_{n=2022}^{\infty} (-1)^n \frac{\ln(\ln n) + 1}{n \ln n}$$

