Dawson College: Winter 2022: Linear Algebra (SCIENCE): 201-NYC-05-S7: Test 2, part 1 of 2name: _____

No books, watches, notes or cell phones are allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1.¹ (1 mark per blank) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

a. If A is a product of elementary matrices, then det(A) ______ equal one.

- b. Let A be a 3×3 matrix, and let B be a 4×4 matrix. If the leading ones of the RREF of A is equal to those of the RREF of B, then det(A) ______ equal zero and det(B) ______ equal zero.
- c. If \vec{u} and \vec{v} are nonzero vectors and $\operatorname{proj}_{\vec{v}} \vec{u} = \vec{u}$, then \vec{u} _____ be parallel to \vec{v} .
- d. Let \vec{w} be orthogonal to both \vec{u} and \vec{v} . Then \vec{w} ______ be orthogonal to $\vec{u} + \vec{v}$.
- e. The vector $\vec{u} \times (\vec{v} \times \vec{w})$ ______ be parallel to the vector \vec{u} .
- f. The vector $\vec{u} \times (\vec{v} \times \vec{w})$ ______ be orthogonal to the vector $2\vec{v} \times (-4\vec{w})$.

Question 2. (1 mark per blank) Given A an $n \times n$ matrix and k a non-zero scalar.

- a. If A is the reduced row echelon form of a singular matrix then $det(A) = _$
- b. If A is an elementary matrix obtained by adding k times one row to an other then det(A) =______
- c. If A is the identity matrix multiplied by k then det(A) =_____.

Question 3. (5 marks) ² Given A, an $n \times n$ matrix such that det(A) = 9 and

 $A^3 A^T = 3A^{-1} \operatorname{adj}(A)$

find n.

Question 4. (5 marks) Using elementary operations show that

$$-sr\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} sb + 2d & rsa + 2rc \\ d & rc \end{vmatrix}$$

 $^{^1}$ From or modified from a John Abbott final examination

 $^{^2}$ From a Dawson College final examination

Question 4. Given
$$A^{-1} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ -1 & 0 & 0 & 1 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & 5 & 1 \end{bmatrix}$$
.

a. (5 marks) Find det(A).

b. (2 marks) Find $\operatorname{adj}(A)$.

Question 5.¹ (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If A is a symmetric $n \times n$ matrix where n is even then det(A) = 0.

Question 6. (3 marks) Solve only for x_3 using Cramer's Rule.

$$\begin{cases} x_1 - 2x_2 + 3x_3 = 4\\ 5x_2 - 6x_3 = 7\\ 8x_3 = 9 \end{cases}$$

Dawson College: Winter 2022: Linear Algebra (SCIENCE): 201-NYC-05-S7: Test 2, part 2 of 2name:

Question 7. (2 marks) Using sketches illustrate that vector addition is commutative.

Question 8.¹ Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n . Given: $||\vec{u}|| = 5$, $||\vec{u} + 2\vec{v}|| = \sqrt{2}$, \vec{v} and $\vec{u} + 3\vec{v}$ are both unit vectors, and the angle between $\vec{u} + 2\vec{v}$ and $\vec{u} + 3\vec{v}$ is $\pi/4$.

- a. (3 marks) Find $\vec{u} \cdot \vec{v}$.
- b. (2 marks) Find $||\vec{u} + \vec{v}||$.

Question 9. Given two planes: \mathcal{P}_1 : x + z = 1 and \mathcal{P}_2 : y + z = 1.

a. (1 mark) Give a point of intersection of the two planes, by inspection.

- b. (1 mark) Give a geometrical argument to explain why the intersection of the two planes is a line.
- c. (2 marks) Find a direction vector for the line of intersection of the two planes without solving for the solution set.

- d. (2 marks) Find the solution set of the system of linear equations determined by \mathcal{P}_1 and \mathcal{P}_2 by only using part a) and part c). Justify.
- e. (1 marks) Sketch a geometrical interpretation to part d).

Question 10. Given the points A(3, 0, -1) and B(3, 1, 0).

- a. (1 mark) Find the equation of the line which passes through A and B.
- b. (4 marks) Find the points on the line which passes through A and B which are $\sqrt{21}$ units away from the origin.

Question 11.³ (4 marks) Determine whether the two lines $\mathcal{L}_1 : \vec{x} = (1 - 2t, 2 - t, 3 + 3t)$ and $\mathcal{L}_2 : \vec{x} = (4 + 3t, -1 + t, 2 + t)$ intersect, are parallel or are skew lines.

Question 12. (5 marks) A cylinder where the sides are not perpendicular to the base (the circle) is called an *oblique cylinder*. Given the oblique cyclinder defined by the given vectors $\vec{u} = (2, 2, 4)$, $\vec{v} = (1, 2, 1)$ and $\vec{w} = (4, 1, 3)$. Find the volume of the oblique cylinder.

Note that from the diagram that \vec{w} is not perpendicular to the base, that \vec{v} is positioned such that its tail is at the center of the circle and its tip lies on the circle, that \vec{u} is positioned such that the vector passes through the center of the circle while its tail and tip lie on the circle. (*Hint: the volume of an oblique cyclinder is equal to the area of the base times the height.*)

Bonus Question. (5 marks) If $\vec{u}, \vec{v} \in \mathbb{R}^n$ then $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||$. Hint: Analyse the squared norm of $||\vec{u}||\vec{v} - ||\vec{v}||\vec{u}|$ and $||\vec{u}||\vec{v} + ||\vec{v}||\vec{u}|$.

³From the assigned homework.