Dawson College: Winter 2022: Linear Algebra (SCIENCE): 201-NYC-05-S7: Test 2, part 1 of 2name: Mk\‘;

No books, watches, notes or cell phones are allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining

marks are given for the work.

Question 1.! (1 mark per blank) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

a. If A is a product of elementary matrices, then det(A) Mt— equal one.

b. Let A be a 3 x 3 matrix, and let B be a 4 x 4 matrix. If the leading ones of the RREF of A is equal to those of the RREF of
B, then det(A) Jﬂl’hf— equal zero and det(B) Jﬂl&t— equal zero.

c. If 4 and v are nonzero vectors and projz ¢ = i, then ¥ _MmMwv$ t be parallel to v.
d. Let @ be orthogonal to both «# and . Then W Mj&t'— be orthogonal to @ + .
e. The vector @ x (¥ x ) _mvebt  pe parallel to the vector .

f. The vector @ X (U X W) _cawnet 1 orthogonal to the vector 20 x (—4).

Question 2. (1 mark per blank) Given A an n x n matrix and k a non-zero scalar.

a. If A is the reduced row echelon form of a singular matrix then det(4) = __Q
b. If A is an elementary matrix obtained by adding k times one row to an other then det(A) = 1
c. If A is the identity matrix multiplied by k then det(A) = ,R“

Question 3. (5 marks) 2 Given A, an n X n matrix such that det(A) = 9 and
A3AT =347 adj(A)
find 7.
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Question 4. Given A~! =
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a. (5 marks) Find det(A).
b. (2 marks) Find adj(A).
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Question 5.1 (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample.
If the statement is true provide a proof of the statement.

If A is a symmetric n x n matrix where n is even then det(A) = 0.
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Question 6. (8 marks) Solve only for x5 using Cramer’s Rule.
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Question 7. (2 marks) Using sketches illustrate that vector addition is commutative. V
/
(

Question 8.' Let @ and # be vectors in R”. Given: ||i]| = 5, ||i + 27]| = v/2, ¥ and @ + 37 are both unit vectors, and the angle
between @ + 2¢ and 4 + 3¢ is 7 /4.

a. (3 marks) Find @ - ¥.

b. (2 marks) Find || + 7]|.
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Question 9. Given two planes: P : z4+z=1and P2: y+2z=1.

a. (1 mark) Give a point of intersection of the two planes, by inspection.

(3,8.1) calisfice btk P oaud P

b. ( 1 mark) lee a geometrlcal argument to explain why the intersection of the two planes is a line.
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c. (2 marks) Find a direction vector for the line of intersection of the two planes without solving for the solution set
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d. (2 marks) Find the solution set of the system of linear equations determined by P; and Ps by only using part a) and part c)
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e. (1 marks) Sketch a geometrical interpretation to part d). - \ -
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Question 10. Given the points A(3,0,—1) and B(3,1,0).
a. (1 mark) Find the equation of the line which passes through A and B.
2
L X-AtvAb teR AB:B-A= [31,00-(3,0,-"= (0,41
b. (4 marks) Find the points on the line which passes through A and B which are /21 units away from the origin.
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Question 11.% (4 marks) Determine whether the two lines £1 : # = (1 —2t, 2—¢, 3+ 3t) and Lo : T = (4 +3t, =1 +¢, 2+ 1)
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Question 12. (5 marks) A cylinder where the sides are not perpendicular to the base (the circle) is called an oblique cylinder. Given
the oblique cyclinder defined by the given vectors @ = (2,2,4), ¥ = (1,2,1) and @ = (4,1, 3). Find the volume of the oblique cylinder.

Note that from the diagram that  is not perpendicular to the base, that ¢’ is positioned such that its tail is at the center of the circle
and its tip lies on the circle, that « is positioned such that the vector passes through the center of the circle while its tail and tip lie
n the circle. (Hint: the volume of an oblique cyclinder is equal to the area of the base times the height.)
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Bonus Question. (5 marks) If 4,7 € R™ then |@- 9| < ||d]|||0]|. Hint: Analyse the squared norm of ||d||T — ||V]|€@ and ||@||T + ||¥]|4.

3From the assigned homework.



