Question 1. ${ }^{1}$ (1 mark per blank) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. If $A$ is a product of elementary matrices, then $\operatorname{det}(A)$ might $\qquad$ equal one.
b. Let $A$ be a $3 \times 3$ matrix, and let $B$ be a $4 \times 4$ matrix. If the leading ones of the RREF of $A$ is equal to those of the RREF of $B$, then $\operatorname{det}(A)$ $\qquad$ equal zero and $\operatorname{det}(\mathrm{B})$ must $\qquad$ equal zero.
c. If $\vec{u}$ and $\vec{v}$ are nonzero vectors and $\operatorname{proj}_{\vec{v}} \vec{u}=\vec{u}$, then $\vec{u}$ must $\qquad$ be parallel to $\vec{v}$.
d. Let $\vec{w}$ be orthogonal to both $\vec{u}$ and $\vec{v}$. Then $\vec{w}$ $\qquad$ be orthogonal to $\vec{u}+\vec{v}$.
e. The vector $\vec{u} \times(\vec{v} \times \vec{w})$ must be parallel to the vector $\vec{u}$.
f. The vector $\vec{u} \times(\vec{v} \times \vec{w})$ cannot be orthogonal to the vector $2 \vec{v} \times(-4 \vec{w})$.

Question 2. ( 1 mark per blank) Given $A$ an $n \times n$ matrix and $k$ a non-zero scalar.
a. If $A$ is the reduced row echelon form of a singular matrix then $\operatorname{det}(A)=$ $\qquad$ -.
b. If $A$ is an elementary matrix obtained by adding $k$ times one row to an other then $\operatorname{det}(A)=1$ $\qquad$
c. If $A$ is the identity matrix multiplied by $k$ then $\operatorname{det}(A)=$ $\qquad$ $k^{n}$
Question 3. (5 marks) ${ }^{2}$ Given $A$, an $n \times n$ matrix such that $\operatorname{det}(A)=9$ and

$$
A^{3} A^{T}=3 A^{-1} \operatorname{adj}(A)
$$

find $n$.

$$
\begin{aligned}
& \operatorname{det}\left(A^{3} A^{\top}\right)=\operatorname{det}\left(3 A^{-1} \operatorname{adi}(A)\right) \\
& \operatorname{det}\left(A^{3}\right) \operatorname{det}\left(A^{\top}\right)=3^{n} \operatorname{det}\left(A^{-1}\right) \operatorname{det}(\operatorname{adj}(A)) \\
&(\operatorname{det}(A))^{3} \operatorname{det} A=3^{n} \frac{1}{\operatorname{det}(A)}(\operatorname{det}(A))^{n-1} \\
&(\operatorname{det}(A))^{5}=3^{n}(9)^{n-1} \\
& 9^{5}=3^{n}\left(3^{2}\right)^{n-1} \\
&\left(3^{2}\right)^{5}=3^{n} 3^{2(n-1)} \\
& 3^{10}=3^{n+2 n-2} \\
& 10=n+2 n-2 \\
& 12=3 n \\
& 4=n
\end{aligned}
$$

Question 4. (5 marks) Using elementary operations show that

$$
-s r\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=\left|\begin{array}{cc}
s b+2 d & r s a+2 r c \\
d & r c
\end{array}\right|
$$

$$
\begin{aligned}
R H S & =\left|\begin{array}{cc}
s b+2 d & r s a+2 r c \\
d & r c
\end{array}\right| \\
& =-2 R_{2}+R_{1} \rightarrow R_{1}\left|\begin{array}{cc}
s b & r s a \\
d & r c
\end{array}\right|
\end{aligned}
$$

$$
=\frac{1}{s} R_{1} \rightarrow R_{1}
$$

$$
s\left|\begin{array}{ll}
b & r a \\
d & r c
\end{array}\right|
$$

$$
=\frac{1}{r} c_{2} \rightarrow C_{2} \quad s r\left|\begin{array}{ll}
b & a \\
d & c
\end{array}\right|
$$

[^0]Question 4. Given $A^{-1}=\left[\begin{array}{cccc}1 & 0 & 2 & 3 \\ -1 & 0 & 0 & 1 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & 5 & 1\end{array}\right]$.
a. (5 marks) Find $\operatorname{det}(A)$.
b. (2 marks) Find $\operatorname{adj}(A)$.

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) \\
\operatorname{adj}(A) & =\operatorname{det}(A) A^{-1} \\
& =\frac{1}{-36}\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
-1 & 0 & 0 & 1 \\
4 & -2 & 0 & 0 \\
0 & 0 & 5 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left|A^{-1}\right| & =\underbrace{a_{1} c_{3}}_{12}+\underbrace{a_{22} c_{32}}_{32}+a_{32} c_{32}+\underbrace{a_{42} c_{42}}_{0} \\
& =a_{32}
\end{aligned} \\
& =-2(-1)^{3+2}\left|\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 1 \\
0 & 5 & 1
\end{array}\right| \\
& =2\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 5 & 1
\end{array}\right| \text { after } R_{1}+R_{2} \rightarrow R_{2} \\
& =2\left[a_{14} c_{11}+a_{21} c_{21}+a_{31} c_{31}\right] \\
& =2(1)(-1)^{1+1}\left|\begin{array}{ll}
2 & 4 \\
5 & 1
\end{array}\right|=2(-16)=-36 \\
& \operatorname{det}(A)=\frac{1}{\operatorname{det}\left(A^{-1}\right)}=\frac{1}{-36}
\end{aligned}
$$

Question 5. ${ }^{1}$ (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If $A$ is a symmetric $n \times n$ matrix where $n$ is even then $\operatorname{det}(A)=0$.
False,

$$
\begin{aligned}
& I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { is symmetric } \\
& \text { since } I_{2}^{\top}=I_{2}, n=2 \text { (even) } \\
& \text { but } \operatorname{det}\left(I_{2}\right)=1 .
\end{aligned}
$$

Question 6. (3 marks) Solve only for $x_{3}$ using Cramer's Rule.

$$
\{\begin{array}{r}
\begin{array}{r}
x_{1}-2 x_{2}+3 x_{3}=4 \\
5 x_{2}-6 x_{3}
\end{array}=7 \\
8 x_{3}=9
\end{array} \quad \underbrace{\left[\begin{array}{rrr}
1 & -2 & 3 \\
0 & 5 & -6 \\
0 & 0 & 8
\end{array}\right]}_{\boldsymbol{A}}\left[\begin{array}{l}
\underline{x_{1}} \\
x_{2} \\
\mathbf{x}_{\mathbf{3}}
\end{array}\right]=\underbrace{\left[\begin{array}{l}
\boldsymbol{y} \\
7 \\
9
\end{array}\right]}_{\underline{\boldsymbol{u}}}
$$

## $\operatorname{det} A=1.5 \cdot 8$

$\operatorname{det} A_{3}=\operatorname{det}\left[\begin{array}{ccc}1 & -2 & 4 \\ 0 & 5 & 7 \\ 0 & 0 & 9\end{array}\right]=1.5 .9$


Question 7. (2 marks) Using sketches illustrate that vector addition is commutative.


Question 8. ${ }^{1}$ Let $\vec{u}$ and $\vec{v}$ be vectors in $\mathbb{R}^{n}$. Given: $\|\vec{u}\|=5,\|\vec{u}+2 \vec{v}\|=\sqrt{2}, \vec{v}$ and $\vec{u}+3 \vec{v}$ are both unit vectors, and the angle between $\vec{u}+2 \vec{v}$ and $\vec{u}+3 \vec{v}$ is $\pi / 4$.
a. (3 marks) Find $\vec{u} \cdot \vec{v}$.
b. (2 marks) Find $\|\vec{u}+\vec{v}\|$.

$\underline{u} \cdot \underline{u}+\underline{u} \cdot(3 v)+(2 D) u+(2 v) \cdot(3 v)=\sqrt{2} \cdot \frac{1}{\sqrt{2}}$
b) $l u+v n^{2}=(u+v) \cdot(u+v)$
$=u \cdot u+u \cdot \underline{V}+U \cdot \underline{U}+\underline{V} \cdot \underline{V}$
$H u^{2}+3 u \cdot v+2 u \cdot u+6 \underline{v} \cdot v=1$
$=\|u\|^{2}+2 L u+u L \|^{2}$
$5^{2}+3 u \cdot y+24 \cdot y+6 \| h^{2}=1$
$5 u \cdot y=1-25-6\left(i^{2}\right)$
$=5^{2}+2(-6)+1^{2}$
$\underline{w} \cdot v=-6$
$=14$

Question 9. Given two planes: $\mathcal{P}_{1}: x+z=1$ and $\mathcal{P}_{2}: y+z=1$.
a. (1 mark) Give a point of intersection of the two planes, by inspection.
b. (1 mark) Give a geometrical argument to explain why the intersection of the two planes is a line.

The normals of both planes are nat parallel. Hewer the indication

c. (2 marks) Find a direction vector for the line of intersection of the two planes without solving for the solution set.

The intersection is parnell to both planes, therefore oribogoment to

d. (2 marks) Find the solution set of the system of linear equations determined by $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$ by only using part a) and part c).
 $=(0,0,1)+t(-1,-1,1)$ where t $\theta R$ since the general solution of $A x=B$ is the lien which poses thresh the origin amd in hing
e. (1 marks) Sketch a geometrical interpretation to part d).


Question 10. Given the points $A(3,0,-1)$ and $B(3,1,0)$.
a. (1 mark) Find the equation of the line which passes through $A$ and $B$.
$\mathscr{L}: \underline{x}=\underline{A}+t \overrightarrow{A B} \quad t \in \mathbb{R} \quad \overrightarrow{A B}=\underline{B}-A=(3,1,0)-(3,0,-1)=(0,1,1)$
b. (4 marks) Find the points on the line which passes through $A$ and $B$ which are $\sqrt{21}$ units away from the origin.


Question $11 .{ }^{3}$ (4 marks) Determine whether the two lines $\mathcal{L}_{1}: \vec{x}=(1-2 t, 2-t, 3+3 t)$ and $\mathcal{L}_{2}: \vec{x}=(4+3 t,-1+t, 2+t)$ $\boldsymbol{L}_{1}: \underline{x}=(1,2,3)+\boldsymbol{t} \underbrace{(-2,-1,3)}_{\boldsymbol{d}_{1}}, t \in \mathbb{R}$ $\mathcal{L}_{2}: \underline{x}=(4,-1,2)+s \underbrace{(3,1,1)}_{d_{2}}, s \in \mathbb{R}$
$\mathscr{L}_{1}$ and $\mathscr{L}_{2}$ are not 11 since d. $_{1}$ Hd d because they are not multiples of each other.

$$
\begin{aligned}
& \left.\left.\left[\begin{array}{ll}
D_{0} \mathcal{Z}_{1} \text { and } \mathcal{Z}_{2} & \text { inter sect? } \\
1-2 t=4+35 \\
2-t=-1+s \\
3+3 t=2+5
\end{array}\right\} \Rightarrow \begin{array}{l}
-3 s-2 t=3 \\
-5-t=-3 \\
-5+3 t=-1
\end{array} \right\rvert\, \begin{array}{ccc}
\sim
\end{array} \begin{array}{ccc}
-1 & -1 & -3 \\
0 & 4 & 2 \\
0 & 0 & \frac{23}{2} R_{2}+R_{3}-3 R_{3}
\end{array}\right] \\
& \therefore \text { inconsistent } \\
& \therefore 1 s, t \text {, for which }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow R_{1}+R_{3} \rightarrow R_{3}\left[\begin{array}{lll}
0 & 1 & 12
\end{array} \text { not intersect. } \therefore \mathcal{L}_{1} \text { and } \mathcal{L}_{2}\right. \\
& \text { are skew lines. }
\end{aligned}
$$

Question 12. ( 5 marks) A cylinder where the sides are not perpendicular to the base (the circle) is called an oblique cylinder. Given the oblique cyclinder defined by the given vectors $\vec{u}=(2,2,4), \vec{v}=(1,2,1)$ and $\vec{w}=(4,1,3)$. Find the volume of the oblique cylinder.

Note that from the diagram that $\vec{w}$ is not perpendicular to the base, that $\vec{v}$ is positioned such that its tail is at the center of the circle and its tip lies on the circle, that $\vec{u}$ is positioned such that the vector passes through the center of the circle while its tail and tip lie


Bonus Question. (5 marks) If $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ then $|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\|$. Hint: Analyse the squared norm of $\|\vec{u}\| \mid \vec{v}-\|\vec{v}\| \vec{u}$ and $\|\vec{u}\| \vec{v}+\|\vec{v}\| \vec{u}$.


[^0]:    ${ }^{1}$ From or modified from a John Abbott final examination
    ${ }^{2}$ From a Dawson College final examination

