Dawson College: Winter 2022: Linear Algebra (SCIENCE): 201-NYC-05-S8: Test 3, part 1 of 2 name:
Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.
Question 1. ¹ (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. Let $S = {\vec{u}, \vec{v}}$ be a set of vectors. If \vec{w} is in $\mathrm{Span}(S)$, then \vec{w} be in S .
b. Let \vec{u}, \vec{v} , and \vec{w} be distinct nonzero vectors in \mathbb{R}^3 . If $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent, then $\vec{u} \cdot (\vec{v} \times \vec{w})$ be equal to $\vec{u} \cdot (\vec{w} \times \vec{v})$.
c. If $\{\vec{a}, \vec{b}, \vec{c}\}$ is a linearly independent set in Span $(\{\vec{u}, \vec{v}, \vec{w}\})$, then $\{\vec{u}, \vec{v}, \vec{w}\}$ be a linearly independent set.
d. If B has no column of zeros, but AB does, then the columns of A be linearly independent.
e. If the column vectors of a square matrix A span all of \mathbb{R}^3 , then the determinant of A be zero.
Question 2.1 (1 mark each)
a. Suppose that $(3, -2, 7)$ and $(-2, a, b)$ is linearly dependent then $(a, b) = \underline{\hspace{1cm}}$.
b. The vector space of all symmetric $n \times n$ matrices has dimension
Question 3. ¹ Consider the subspace $H = \{ A \mid A \in \mathcal{M}_{2\times 2} \text{ and } \begin{bmatrix} 1 & 3 \end{bmatrix} A \begin{bmatrix} 1 & 3 \end{bmatrix}^T = 0 \}.$
a. (1 marks) Find two vectors of H .
b. (4 marks) Find a basis for H .
c. (1 mark) State the $\dim(H)$.
[3 9]

d. (2 marks) Express $\begin{bmatrix} 2 & 3 \\ 2 & 4 \end{bmatrix}$ relative to the basis found in part b., if possible.

 $^{^{\}rm 1}$ From or modified from a John Abbott final examination

Question 4.² Let $V = \{(a,b) \mid a,b \in \mathbb{R}, b > 0\}$. And the addition in V is defined by $(a,b) \bigoplus (c,d) = (ad+bc,bd)$ and scalar multiplication in V is defined by $t \bigoplus (a,b) = (tab^{t-1},b^t)$

- a. $(1 \text{ mark}) (2,3) \bigoplus (-2,1)$
- b. $(1 \text{ mark}) 3 \odot (3, 1)$
- c. (3 marks) Demonstrate whether the 5th axiom of vector spaces holds given that the $\vec{0}$ is (0,1). That is, do additive inverse exists for all vectors in V.

Question 5.3 (4 marks) Determine whether the set of all $n \times n$ matrices A such that trace(A) = 0 is a subspace of $\mathcal{M}_{n \times n}$.

 $^{^2}$ From http://www.math.uwaterloo.ca/ jmckinno/Math225/Week1/Lecture1e.pdf

 $^{^3}$ From the assigned homework.

