Question 1.

a. (2 marks) Show that $0<\frac{(n!)^{2}}{(2 n)!}<1$ when $n \geq 1$.

b. (4 marks) Use part a. (whether or not you have shown it) to determine if the following sequence converges or diverges. If it converges, find its limit.
$a_{n}=\frac{(n!)^{2}}{(2 n+1)!}$

$$
\begin{gathered}
0<\frac{(n!)^{2}}{(2 n)!}<1 \\
0 \frac{1}{2 n+1}<\frac{(n!)^{2}}{(2 n)!} \frac{1}{2 n+1}<1 \cdot \frac{1}{2 n+1} \\
c_{n}=0<a_{n}<\frac{1}{2 n+1}=b_{n}
\end{gathered}
$$

Since $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} b_{n}=0$ then by the squeeze the. $a_{n} \rightarrow 0$ as $n \rightarrow \infty$

Question 2. (3 marks) Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.

$$
\left\{\frac{1}{2},-\frac{4}{3}, \frac{9}{4},-\frac{16}{5}, \frac{25}{6}, \ldots\right\} \quad a_{n}=(-1)^{n+1} \frac{n^{2}}{n+1}
$$

Question 3. (5 marks) Determine whether the sequence converges or diverges. If it converges, find the limit.

$$
\begin{aligned}
& a_{n}=n \int_{0}^{1 / n} \arccos (t) d t \\
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} \arccos (t) d t \quad \text { If. } \infty \cdot 0 \\
&=\lim _{x \rightarrow \infty} \times \int_{0}^{1 / x} \arccos (t) d t \\
&=\lim _{x \rightarrow \infty} \frac{\int_{0}^{1 / x} \arccos (t) d t}{\arccos \left(\frac{1}{x}\right)-x^{2}} \\
& \frac{1}{x} \\
& \lim _{x \rightarrow \infty} \\
&= \arccos (0) \\
&= \frac{\pi}{x^{2}}
\end{aligned}
$$

