Question 1. (5 marks) Determine whether the series is convergent or divergent.

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \cos \left(\frac{1}{n^{2}}\right) \\
& \lim _{a_{n}} a_{n}=\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n^{2}}\right)=\cos (0)=1 \neq 0
\end{aligned}
$$

$a^{0} 0$ the series is divergent by the $n^{\text {th }}$ term divergence test.

Question 2. (5 marks) Determine whether the series is convergent or divergent.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n-\arcsin \left(\frac{1}{n}\right)}{n 2^{n}} \\
& \text { Let } a_{n}=\frac{n-\arcsin \left(\frac{1}{n}\right)}{n 2^{n}} \leq \frac{n}{n 2^{n}}=\frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}=b_{n}
\end{aligned}
$$

$$
0 \leq a_{n}
$$

$\sum a_{n}$ converges by the comparisontest since $\sigma \leq a_{n} \leq b_{n}$ and $\sum b_{n}$ is convergent because its a geometric series where

$$
|r|=\frac{1}{2}<1
$$

Question 3. (5 marks) Determine whether the series is convergent or divergent.

$$
\begin{aligned}
& \sum_{n=10}^{\infty} \frac{1}{n \ln n \sqrt{(\ln n)^{2}-1}} \quad \text { Let } a_{n}=f(n) \text { where } f(x)=\frac{1}{x \ln x \sqrt{(\ln x)^{2}-1}} \\
& \text { - } f(x)>0 \text { on }[10, \infty) \\
& \text { - } f(x) \text { is continuous on }[10, \infty) \\
& \text { - } f^{\prime}(x)=\frac{-1}{\left(x \ln x \sqrt{(\ln x)^{2}-1}\right)^{2}}\left[\ln x \sqrt{(\ln x)^{2}-1}+x \frac{1}{x} \sqrt{(\ln x)^{2}-1}+x \ln x \frac{1}{\sqrt{(\ln x)^{2}-1}} \frac{2 \ln x}{x}\right] \\
&<0 \text { on }[10, \infty)
\end{aligned}
$$

So lets apply the integral test

$$
\begin{aligned}
\int_{10}^{\infty} \frac{1}{x \ln x \sqrt{\ln x)^{2}-1}} d x & =\lim _{b \rightarrow \infty} \int_{10}^{b} \frac{1}{x \ln x \sqrt{(\ln x)^{2}-1}} d x \quad \begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x \\
\\
\end{array} \lim _{b \rightarrow \infty} \int_{\ln 10}^{\ln b} \frac{1}{u(b)=\ln b} \begin{array}{l}
u(10)=\ln 10 \\
\\
\\
\end{array} \lim _{b \rightarrow \infty}[\operatorname{arcsec} u]_{\ln 10}^{\ln b} \\
& =\lim _{b \rightarrow \infty} \operatorname{arcsec} \ln b-\operatorname{arcsec} \ln 10 \\
& =\frac{\pi}{2}-\operatorname{arcsec}(\ln (10))
\end{aligned}
$$

\therefore © the improper integral converges
0^{0} c los the integral test the series $\sum a_{n}$ converges sivier the improper integral convergent.

Bonus Question (2 marks)

A Calculus II student is hired as a manager at David Hilbert's Hotel which is a very large hotel, in fact, it has infinitely many rooms numbered 1, $2,3, \ldots$. The hotel is very popular and every room is occupied one night.
That night a new guest arrives.
-Is there any free room?
-No, the former Calculus II student said.
-Oh, what a pity, the guest said and started to walk away.
-But wait, you can still get a room.
How can the former Calculus II student find a room for the guest?

