Question 1. (1 mark each) Integrate the following indefinite integrals:
a.

$$
\int \frac{1}{x^{1 / 5}} d x=\int x^{-1 / 5} d x=\frac{x^{-1 / 5+1}}{-1 / 5+1}+C=\frac{5}{4} x^{4 / 5}+C
$$

b.

$$
\int \csc x d x=-\ln |\csc x+\cot x|+C
$$

c.

$$
\int \tan x d x=-\ln |\cos x|+C
$$

d.

$$
\int \frac{1}{\sqrt{13-x^{2}}} d x=\int \frac{1}{\sqrt{(\sqrt{13})^{2}-x^{2}}} d x=\arcsin \frac{x}{\sqrt{13}}+C
$$

e.

$$
\int e^{x} d x=\boldsymbol{e}^{\mathbf{x}}+\mathbb{C}
$$

f.

$$
\int \cos x d x=\sin x+C
$$

Question 2. (4 marks) Find f.

$$
\begin{aligned}
& f^{\prime \prime}(t)=3 \cos t+2 \sin t f(0)=0, f(\pi)=0 \\
& f^{\prime}(t)=\int f^{\prime \prime}(t) d t=\int 3 \cos t+2 \sin t d t=3 \sin t-2 \cos t+C \\
& f(t)=\int f^{\prime}(t) d t=\int 3 \sin t-2 \cos t+C d t=-3 \cos t-2 \sin t+C t+D \\
& 0=f(0) \\
& 0=-3 \cos (0)-2 \sin (0)+C(0)+D \\
& 3=D \\
& 0=f(\pi) \\
& 0=-3 \cos (\pi)-2 \sin (\pi)+C(\pi)+3 \\
& 0=3-0+C \pi+3 \\
& C=\frac{6}{\pi} \\
& 00 f(t)=-3 \cos t-2 \sin t+\frac{6}{\pi} t+3
\end{aligned}
$$

