Question 1. (3 marks) Determine and sketch the region whose area is equal to

$$
\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n} \arctan \left(1+\frac{2 i}{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \arctan \left(1+\frac{2 i}{n}\right) \frac{2}{n}
$$

$$
\begin{aligned}
& f(x)=\arctan x \\
& \Delta x=\frac{2}{n}=\frac{b-a}{n} \\
& x_{i}=1+\frac{2 i}{n}=a+i \Delta x \quad \therefore \quad \begin{array}{l}
a=1 \\
b=3
\end{array}
\end{aligned}
$$

Question 2. The graph of $y=f(x)$ consists of straight lines, one semicircle and a curve on the interval $[3, \infty)$. In addition, $\int_{4}^{3} 9 f(x) d x+4=0$.

a. (3 marks) Find an approximation of the definite integral of $f(x)$ on the interval $[-4,2]$, using the midpoints as sample points and 3 approximating rectangles. Draw the approximating rectangles. $\quad \Delta x=\frac{b-a}{n}=\frac{2-(-4)}{3}=\frac{6}{3}=2$
b. (5 marks) Evaluate $\int_{-1}^{4} f(x) d x$.
a) $\int_{-4}^{2} f(x) d x \approx f(-3) \Delta x+f(-1) \Delta x+f(1) \Delta x=(-2)(2)+(-1)(2)+(1)(2)=-4$
b) $\int_{4}^{3} 9 f(x) d x+4=0$

$$
\begin{aligned}
\int_{-1}^{4} f(x) d x & =\int_{-1}^{0} f(x) d x+\int_{0}^{3} f(x) d x+\int_{3}^{4} f(x) d x \\
& =\frac{(-1)(1)}{2}+\frac{2(3)}{2}+\frac{4}{9} \\
& =\frac{-1}{2}+3+\frac{4}{9} \\
& =\frac{5}{2}+\frac{4}{9} \\
& =\frac{45+8}{18} \\
& =\frac{53}{18}
\end{aligned}
$$

