Question 1. (5 marks) Find the exact length of the curve $y=\ln (\cos x)$ on $[0, \pi / 3]$.

$$
\begin{aligned}
S & =\int_{0}^{\pi / 3} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \quad y^{\prime}=\frac{1}{\cos x}-\sin x=-\tan x \\
& =\int_{0}^{\pi / 3} \sqrt{1+(-\tan x)^{2}} d x \\
& =\int_{0}^{\pi / 3} \sqrt{1+\tan ^{2} x} d x \\
& =\int_{0}^{\pi / 3} \sqrt{\sec ^{2} x} d x \\
& =\int_{0}^{\pi / 3}|\sec x| d x \\
& =\int_{0}^{\pi / 3} \sec x d x \\
& =[\ln |\sec x+\tan x|]_{0}^{\pi / 3} \\
& =\ln \left|\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\right|-\ln |\sec 0+\tan 0| \\
& =\ln |2+\sqrt{3}|-\ln \mid \\
& =\ln (2+\sqrt{3})
\end{aligned}
$$

Question 2. (5 marks) Sketch and find the area of the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola at $(1,1)$, and the x -axis.
tangent of $y=x^{2}$ at $(1,1)$:

$$
\begin{aligned}
& y^{\prime}=2 x \\
& m=2(1)=2 \quad \therefore \text { slope of tangent at } x=1 \text { is } 2
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad y=m x+b \\
& y=2 x+b \\
& \text { sub }(1,1) \quad \\
& \quad 1=2(1)+b \\
& b=-1 \\
& \therefore y=2 x-1
\end{aligned}
$$

The x-int. of the tangent is $x=\frac{1}{2}$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1 / 2} x^{2}-0 d x+\int_{1 / 2}^{1} x^{2}-(2 x-1) d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{1 / 2}+\left[\frac{x^{3}}{3}-\frac{2 x^{2}}{2}+x\right]_{1 / 2}^{1} \\
& =\frac{(1 / 2)^{3}}{3}+\left[\frac{1}{3}-1^{2}+1\right]-\left[\frac{11 / 3}{3}-(1 / 2)^{2}+1 / 2\right] \\
& =1 / 3+1 / 4-1 / 2 \\
& =\frac{4+3-6}{12} \\
& =\frac{1}{12}
\end{aligned}
$$

