Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. If $(1,1,0,0,0)$ and $(2,0,0,0,0)$ are both solutions of a system of 13 linear equations $A \mathbf{x}=\mathbf{b}$ then $(-1,1,0,0,0)$ \qquad must \qquad be a solution of the associated homogeneous system $A \mathbf{x}=\mathbf{0}$.
b. If the solution set of a system of 13 linear equations $A \mathbf{x}=\mathbf{b}$ is a line and $(1,1,0,0,0)$ and $(2,0,0,0,0)$ are both solutions of the system $\mathbf{x}=(-12,14,0,0,0)+t(-13,13,0,0,0), t \in \mathbb{R}$ must is the solution set of $A \mathbf{x}=\mathbf{b}$.
c. If $(1,1,0,0,0)$ and $(2,0,0,0,0)$ are both solutions of a system of 13 linear equations $A \mathbf{x}=\mathbf{b}$ then $(-1,1,0,0,0)$ must \qquad be orthogonal to the rows of the coefficient matrix A.
d. If $(1,1,0,0,0)$ and $(2,0,0,0,0)$ are both solutions of a system of 13 linear equations $A \mathbf{x}=\mathbf{b}$ then $(0,1,0,0,0)$ \qquad be orthogonal to the rows of the coefficient matrix A.

Question 2.

a. (2 marks) Find the parametric equation of the plane $x+2 y+3 z=5$. Find a point on the plane and two vectors parallel to the plane.

$$
\left.\begin{array}{rlrl}
\text { Let } \begin{array}{rl}
y & =s \\
z & =t
\end{array} \text { sit } \in R \\
x+2 s+3 z & =5 \\
x & =5-2 s-3 t
\end{array} \quad \begin{array}{rlr}
0 \cdot(x, y, z) & =(5-2 s-3 t, s, t) \\
& =(\underbrace{5,0,0}_{P_{0}})
\end{array}\right)
$$

b. (2 marks) Find the intersection between the plane $x+2 y+3 z=5$ and the $x y$-plane.

$$
\begin{aligned}
& \text { The general equation of the } x y \text {-plane is } z<0 \\
& {\left[\begin{array}{llll}
1 & 2 & 3 & 5 \\
0 & 0 & 1 & 0
\end{array}\right] \sim-3 R_{2}+R_{1} \rightarrow R_{1}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 5 \\
0 & 1 & 0
\end{array}\right] \begin{array}{c}
\text { Lat } \begin{array}{l}
y \\
x=5-2 t \\
z=0
\end{array}
\end{array} \therefore \mathscr{L}(x, y, z)=(5-2 t, t, 0)} \\
&
\end{aligned}
$$

c. (2 marks) Find all unit vectors parallel to the plane $x+2 y+3 z=5$ and the $x y$-plane.

$$
\begin{aligned}
& u_{1}=\frac{d}{\|d\|}=\frac{(-2,1,0)}{\sqrt{5}} \\
& u_{2}=\frac{-d}{\|d\|}=\frac{(2,-1,0)}{\sqrt{5}}
\end{aligned}
$$

Question 3. (5 marks) Given that $\mathscr{L}_{1}: \mathbf{x}=\overbrace{(1,0,2)}^{P_{1}}+t \overbrace{(-1,3,2)}, \mathscr{L}_{2}: \mathbf{x}=(1,1,-1)+t(-1,3,2)$ where $t \in \mathbb{R}$ and $P(0,5,-4)$ all lie on the same plane. Determine whether P lies between \mathscr{L}_{1} and \mathscr{L}_{2}.

$$
\begin{aligned}
\vec{P}_{2} \vec{P}_{1} & =(1,0,2)-(1,1,-1)=(0,-1,3) \\
P_{1} \vec{p} & =(0,5,-4)-(1,0,2)=(-1,5,-6) \\
P_{2} P_{P} & =(0,5,-4)-(1,1,-1)=(-1,4,-3) \\
p_{\sim \times 2} p_{d} p_{2} P_{1} P_{1} & =(0,-1,3)-\frac{(0,-1,3) \cdot(-1,3,2)}{(-1,3,2)(-1,3,2)}(-1,3) \\
& =(0,-1,3)-\frac{3}{14}(-1,3,2) \\
& =\frac{1}{14}(3,-23,36)
\end{aligned}
$$

$$
P_{1}, P \cdot(3,-23,36)<0
$$

Bonus Question. (3 marks) Given a Yank plane segment defined as $\mathbf{x}=(1,0,2)+s(1,1,1)+t(2,1,3)$ where $(s, t) \in[-1,2] \times[-2,0]$. Find the area of the Yann plane segment.

