Question 1. (5 marks) Consider the vectors in $\mathbb{R}^{3}: \mathbf{u}(\theta)=(\cos \theta, \sin \theta, 0)$ and $\mathbf{v}=(1,0,1)$. Find all the values of the angle θ in $[0,2 \pi)$ for which the parallelepiped spanned by $\mathbf{u}(\theta), \mathbf{v}$ and $\mathbf{u}(\theta) \times \mathbf{v}$ has volume $V=2$.

$$
\begin{array}{rl}
\underline{u}(\theta) \times \underline{v} & =\left(\left|\begin{array}{cc}
\sin \theta & 0 \\
0 & 1
\end{array}\right|,-\left|\begin{array}{cc}
\cos \theta & 1 \\
0 & 1
\end{array}\right|,\left|\begin{array}{cc}
\cos \theta & 1 \\
\sin \theta & 0
\end{array}\right|\right)=(\sin \theta,-\cos \theta,-\sin \theta) \\
\sin \theta & 1 \\
0 & 1 \\
V & =|\underline{u}(\theta) \cdot(\underline{v} \times(\underline{u}(\theta) \times \underline{v}))| \\
v & =|(\underline{u}(\theta) \times \underline{v}) \cdot(\underline{u}(\theta) \times \underline{v})| \\
V & =\|\underline{u}(\theta) \times \underline{v}\|^{2} \\
2 & =\sin ^{2} \theta+\cos ^{2} \theta+\sin ^{2} \theta \\
2 & =1+\sin ^{2} \theta \\
1 & =\sin \theta \\
\pm 1 & =\sin ^{2} \theta \\
\theta=\frac{\pi}{2} \cdot \frac{3 \pi}{2}
\end{array}
$$

Question 2. (5 marks) Given the lines $L_{1}:\left\{\begin{array}{l}x=7+2 s \\ y=1 \\ z=6+s\end{array}\right.$ and $L_{2}:\left\{\begin{array}{l}x=5-t \\ y=-1-t \\ z=-6+t\end{array}\right.$, find the parametric equations of the line that intersects both L_{1} and L_{2} at right angles.
$\underline{d}_{1}=(2,0,1), \underline{d}_{2}=(-1,-1,1)$ since $\underline{d}_{1} H \underline{d}_{2}$ the lines are not parallel.
Lets determine if the lines intersect
(1) $7+2 s=5-t$
sub $t=-2$ in (1) $7+2 s=5-(-2) \Rightarrow s=0$
$1=-1-t \Rightarrow t=-2$
(2) $6+5=-6+t$
subs $t=-2$ in (3) $6+s=-6+(-2) \Rightarrow s=-14$
$\therefore \nexists$ sit. such that the two lines have a point in common.
$\therefore X_{1}$ and \mathscr{L}_{2} are skew lines.

\mathcal{L}^{\prime} the line which passes through \mathscr{L}_{1} and \mathcal{L}_{2} at \perp is the line which passes through the the closest points on \mathscr{L}_{1} and \mathscr{L}_{2}.

$$
\begin{aligned}
\vec{P}_{1} P_{2} & =\left(5-t,-1-t_{1}-6+t\right)-(7+2 s, 1,6+s) \\
& =(-2-t-2 s,-2-t,-12+t-s)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \\
& \text { (2) } \vec{P}_{1} \vec{P}_{2} \cdot d_{k}=0 \quad \text { (2) }(11,(-2-t-2 s, 1, ") \cdot(-1,-1,1)=c \\
& \text { (1) } 2(-2-t-2 s)+(-12+t-s)=0 \\
& \text { (2)" }-1(-2-t-2 s)-(-2-t)+(-12+t-s)=0 \\
& \text { (1)" }-16-t-5 s=0 \\
& \text { (2) }-8+3 t+s=0 \\
& \text { (2) }{ }^{\prime \prime}+3 \text { (1) }^{\prime \prime \prime}: \quad-56-145=0 \Rightarrow 5=-4 \Rightarrow t=4 \\
& \Rightarrow \underline{d}^{\prime}=(-2-(4)-2(-4),-2-(4),-12+(4)-(-4)) \\
& =(2,-6,-4) \\
& \text { and } P_{1}:(x, y, z)=(7+2(-4), 1,6+(-4))=(-1,1,2)
\end{aligned}
$$

$$
\therefore \quad \mathcal{Z}^{\prime}:(x, y, z)=(-1,1,2)+t(2,-6,-4) \quad t \in \mathbb{R}
$$

