Question 1. ${ }^{1}$ Let $V=\{(a, b) \mid a, b \in \mathbb{R}, b>0\}$. And the addition in V is defined by $(a, b) \oplus(c, d)=(a d+b c, b d)$ and scalar multiplication in V is defined by $t \odot(a, b)=\left(t a b^{t-1}, b^{t}\right)$
a. $(1$ mark $)(4,2) \oplus(-5,1)=(4(1)+2(-5), 2(1))=(-6,2)$
b. $(1$ mark $)-2 \odot(1,2)=\left(-2(1)(2)^{-2-1}, 2^{-2}\right)=\left(\frac{-2}{2^{3}}, \frac{1}{2^{2}}\right)=\left(\frac{-1}{4}, \frac{1}{4}\right)$
c. (3 marks) Demonstrate whether the 4th axiom of vector spaces holds. That is, does the zero vector exists in V.

$$
\begin{aligned}
& \text { Let } \underline{o}=(a, b) \text { and } \underline{v}=\left(v_{1}, v_{2}\right) \\
& \underline{v}+\underline{0}=\underline{v} \quad \therefore \underline{\theta}=(0,1) \in V \text { since } 1>0 \text { and } 0 \in \mathbb{R} \\
& \left(a v_{2}+b v_{1}, b v_{2}\right)<\left(v_{1}, v_{2}\right) \\
& \Rightarrow \quad a v_{2}+b v_{1}=v_{1} \text { and } b v_{2}=v_{2} \\
& a v_{2}=0 \\
& \Rightarrow a=0
\end{aligned}
$$

d. (3 marks) Demonstrate whether the fth axiom of vector spaces holds. That is, additive inverses in V exists for all vectors in V.

Question 2. (5 marks) Prove: If $a \neq 1$ and \mathbf{v} is any vector in a vector space V such that $a \mathbf{v}=\mathbf{v}$ then $\mathbf{v}=\mathbf{0}$. Show every step, justify every step, and cite the axiom (s) used!!!

Suppose $\underline{v} \neq \underline{0}$
$\begin{aligned} a \underline{v} & =\underline{v} \\ a \underline{v}+\underline{w} & =\underline{w} \text { add the additive inverse of } \underline{v} \text {, existance by axioms } 5\end{aligned}$
$a \underline{a}+\underline{w}=\underline{Q} \quad$ axiom (5)
$a x+(-1) \underline{v}=0$ by the 1.1 seen in class
$(a-1) \underline{v}=0 \quad \operatorname{axion}(1)$

Bonus Question. (3 mark) Show that the commutativity axiom can be shown using the other axioms by first calculating $(1+1)(\mathbf{v}+\mathbf{w})$ in two different ways.

[^0]
[^0]: ${ }^{1}$ From http://www.math.uwaterloo.ca/ jmckinno/Math225/Week1/Lecturele.pdf

