Question 1. (4 marks) Determine whether $H=\left\{A \mid A \in \mathscr{M}_{n \times n}\right.$ and $\left.B A C=C A B\right\}$ where B and C are fixed $n \times n$ matrices, is a subspace of $\mathscr{M}_{n \times n}$

Question 2. (4 marks) Let $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be linearly independent in $\mathscr{M}_{m \times n}$, and suppose that U and V are invertible matrices of size $m \times m$ and $n \times n$, respectively. Show that $\left\{U A_{1} V, U A_{2} V, \ldots, U A_{k} V\right\}$ is linearly independent.

Question 3. (4 marks) Determine whether the following statements is true or false. If the statement is false, provide a counterexample. If the statement is true, provide a proof of the statement.
If $\mathbf{u}, \mathbf{v}, \mathbf{p}, \mathbf{q}$ be nonzero vectors in \mathbb{R}^{3} and $\operatorname{span}\{\mathbf{u}, \mathbf{v}\}=\operatorname{span}\{\mathbf{p}, \mathbf{q}\}$ then $(\mathbf{u} \times \mathbf{v}) \times(\mathbf{p} \times \mathbf{q})=\mathbf{0}$.

