Question 1. (2 marks) Consider the vectors $\mathbf{u}=(1,2,-3)$ and $\mathbf{v}=(0,7,1)$ where $\mathscr{B}=\{\mathbf{u}, \mathbf{v}\}$ is a basis for a vector space W. Find the coordinates of the vector $\mathbf{w}=(1,23,0)$ relative to \mathscr{B}.

Question 2. (5 marks) Consider the space $M_{3 \times 3}$ of all square matrices of size 3×3 and the subset W of skew-symmetric matrices:

$$
W=\left\{\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right], a, b, c \text { in } \mathbb{R}\right\}
$$

and consider the matrices:

$$
A=\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

Determine whether $S=\{A, B, C\}$ is a basis for W and state the dimension of W.

Bonus Question.

definition: ${ }^{1}$ A group G is a set of elements satisfying the four conditions below, relative to some binary operation.

1. $\exists e \in G \forall g \in G: e \cdot g=g \cdot e=g$. (Identity.)
2. $\forall x, y, z \in G:(x \cdot y) \cdot z=x \cdot(y \cdot z)$. (Associativity.)
3. $\forall x \in G, \exists y \in G x \cdot y=y \cdot x=e$. (Inverse.)
4. $\forall x, y \in G: x \cdot y \in G$. (Closure.)
where e is called the identity.
a. (2 marks) Show that the identity is unique.
b. (2 marks) Is a vector space a group?
[^0]
[^0]: ${ }^{1}$ https://web.williams.edu/Mathematics/sjmiller/public_html/mathlab/public_html/handouts/GroupTheoryIntro.tex

