Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2023: Quiz 15 name: X—Aﬂmdm

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531%**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (2 marks) Consider the vectors u = (1,2, —3) and v= (0,7, 1) where # = {u, v} is a basis for a vector space W. Find the coordinates
of the vector w = (1,23,0) relative to A.
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Question 2. (5 marks) Consider the space M33 of all square matrices of size 3 x 3 and the subset W of skew-symmetric matrices:

and consider the matrices:

Determine whether S = {A, B,C} is a basis for W and state the dimension of W.
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Question 3. (5 marks) Let A be a nonzero 2x2 matrix and write U = {X € 4> | XA = AX}. Show that dim(U) >2. Hint: I and A are in U

and prove by contradiction.
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Bonus Question.
definition:' A group G is a set of elements satisfying the four conditions below, relative to some binary operation.

l. JecGVgeG:e-g=g-e=g. (Identity.)
2. ¥x,y,z€ G (x-y)-z=x-(y-z). (Associativity.)
3. Vxe G,3ye Gx-y=y-x=e. (Inverse.)
4. Vx,y € G:x-y € G. (Closure.)
where e is called the identity.
a. (2 marks) Show that the identity is unique.

b. (2 marks) Is a vector space a group?

Uhttps://web.williams.edu/Mathematics/sjmiller/public_html/mathlab/public_html/handouts/GroupTheoryIntro.tex



