Question 1. (4 marks) Solve for A, if possible.

$$
\left[\begin{array}{cc}
3 & 1 \\
1 & -1
\end{array}\right] A-A\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
9 & -21 \\
-23 & -7
\end{array}\right]
$$

$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$\left[\begin{array}{rr}3 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]-\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}9 & -21 \\ -23 & -7\end{array}\right]$
$\left[\begin{array}{ll}3 a+c & 3 b+d \\ a-c & b-d\end{array}\right]-\left[\begin{array}{ll}2 a & a+b \\ 2 c & c+d\end{array}\right]=\left[\begin{array}{cc}9 & -21 \\ -23 & -7\end{array}\right]$

$$
\left[\begin{array}{ll}
a+c & d+2 b-a \\
a-3 c & b-c-2 d
\end{array}\right]=\left[\begin{array}{cc}
9 & -21 \\
-23 & -7
\end{array}\right]
$$

Question 2. (4 marks) A matrix B is said to be a square root of a matrix A if $B B=A$. Find all square roots of $\left[\begin{array}{ll}5 & 0 \\ 0 & 9\end{array}\right]$.
Let $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $B B=A \quad\left[\begin{array}{ll}a & b\end{array} \quad\right.$ in order to satisty (3) $c=0$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
0 & 9
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a^{2}+b c & a b+b d \\
a c+d c & b c+d^{2}
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
0 & 9
\end{array}\right]}
\end{aligned}
$$ $\therefore 4$ solutions $B=\left[\begin{array}{cc} \pm \sqrt{5} & 0 \\ 0 & \pm 3\end{array}\right]$

If $a+d=0$
sub into (1): $(-d)^{2}+b c=5$
and Θ : $d^{2}+b c=9$
Impossible to satisty (1) and (4)
\therefore only the 4 solutions listed above.
(1) $a^{2}+b c=5$
(2) $a b+b d=0 \Rightarrow b(a+d)=0$
(3) $a c+d c=0$
(4) $b c+d^{2}=9$

To satisty egn $(2$ either $b=0$ or $a+d=0$ If $b=0$ then (1) and (1) simplity to

$$
\begin{aligned}
& a^{2}=5 \Rightarrow a= \pm \sqrt{5} \\
& d^{2}=9 \Rightarrow d= \pm 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } a+c=9 \quad \text { (1) -(2) : } 4 c=32 \\
& \text { (2) } a-3 c=-23 \\
& c=8 \text { sub into (1) } a+8=9 \\
& \begin{array}{l}
\text { (3) }-a+2 b+d=-21 \\
\text { (4) } b-c-2 d=-7
\end{array} \\
& \text { sub } a \text { and } c \text { into (3) and(4) } \\
& \text { (3) } 2 b+d=-20 \\
& \text { (4) } b-2 d=1 \\
& \text { (3) } 2(14)^{\prime:} \quad \begin{array}{l}
5 d=-22 \\
d=-\frac{22}{5}
\end{array} \text { sob intc (4) } b-2\left(\frac{-22}{5}\right)=1 \\
& \therefore A=\left[\begin{array}{ll}
1 & -39 / 5 \\
8 & -22 / 5
\end{array}\right] \\
& b=\frac{-39}{5}
\end{aligned}
$$

