Question 1. (5 marks) Solve for X the following equation:

$$
\begin{aligned}
& (A X+3 I)^{-1} C=B A^{-1} C^{T}\left(B A^{T} C^{-1}\right)^{T} \\
& \text { where } A=\left[\begin{array}{cc}
13 & 5 \\
5 & 2
\end{array}\right], B=\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
5 & 4 \\
4 & 3
\end{array}\right] \cdot(A X+3 I)^{-1} C=B A^{-1} C^{\top}\left(C^{-1}\right)^{\top}\left(A^{\top}\right)^{\top} B^{\top} \\
& A^{-1}=\frac{1}{13(2)-5(5)}\left[\begin{array}{cc}
2 & -5 \\
-5 & 13
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
-5 & 13
\end{array}\right] \quad(A X+3 I)^{-1} C C^{-1}=B A^{-1} C^{\top}\left(C^{\top}\right)^{-1} A \\
& B^{-1}=\frac{1}{0(0)-(1)(-2)}\left[\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 / 2 \\
1 & 0
\end{array}\right] \\
& (A X+3 I)^{-1}=B A^{-1} A B^{\top} C^{-1} \\
& \left((A X+3 I)^{-1}\right)^{-1}=\left(B I B^{\top} C^{-1}\right)^{-1} \\
& A X+3 I=\left(C^{-1}\right)^{-1}\left(B^{-1}\right)^{\top} B^{-1} \\
& A X=C\left(B^{-1}\right)^{\top} B^{-1}-3 I \\
& A^{-1} A X=A^{-1}\left(C\left(B^{-1}\right)^{\top} B^{-1}-3 I\right) \\
& X=A^{-1} C\left(B^{-1}\right)^{\top} B^{-1}-3 A^{-1} \\
& X=\left[\begin{array}{cc}
2 & -5 \\
-5 & 13
\end{array}\right]\left[\begin{array}{cc}
5 & 4 \\
4 & 3
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 / 2 \\
1 & 0
\end{array}\right]-3\left[\begin{array}{cc}
2 & -5 \\
-5 & 13
\end{array}\right] \\
& X=\left[\begin{array}{cc}
-10 & -7 \\
27 & 19
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 4
\end{array}\right]-\left[\begin{array}{cc}
6 & -15 \\
-15 & 39
\end{array}\right] \\
& X=\left[\begin{array}{cc}
-10 & -7 / 4 \\
27 & 19 / 4
\end{array}\right]-\left[\begin{array}{cc}
6 & -15 \\
-15 & 39
\end{array}\right] \\
& X=\left[\begin{array}{cc}
-16 & 53 / 4 \\
42 & -137 / 4
\end{array}\right]
\end{aligned}
$$

Question 2. (4 marks) Assume that a square matrix A satisfies $2 A^{2}+5 A-4 I=0$. Show that $2 A-I$ is invertible and find its inverse in terms of A and I.
Lets show that $\exists B$ s.t. $\begin{aligned} & (2 A-I) B=I \\ & B(2 A-I)=I\end{aligned}$
$2 A^{2}+5 A-4 I=0$
$2 A^{2}+5 A-3 I=I$
$(2 A-I)(A+3 I)=I$ also $(A+3 I)(2 A-I)=I$
$\therefore(2 A-I)$ is invertible and its inverse is $B=(A+3 I)$

Question 3. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If A and B are square matrices of the same size then $(A B)^{T}=A^{T} B^{T}$.
False, Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right] \quad A B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right] \quad(A B)^{T}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$ but $A^{\top}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], B^{\top}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \quad A^{\top} B^{\top}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right] \neq(A B)^{\top}$

