Question 1. (5 marks) Consider the matrices A, B, C, all square and of the same size. Assume that the linear systems $A \mathbf{x}=0$ and $B \mathbf{x}=0$ have only the trivial solution and that C is row equivalent to B. Prove that $A C$ can be written as a product of elementary matrices.
Since $A \underline{x}=\underline{0}$ and $B \underline{x}=\underline{0}$ have only the trivial solution then A and B are invertible" by the equivalence theorem.
Since C is row equivalent to $B \quad \exists E_{i}$ s.t. $C=E_{n} \cdots E_{0} E_{1} B$
$\therefore A C=A E_{n} \cdots E_{1} E_{1} B$ is invertible since it is a product of invertible matrices
invertible. by and since elementary matrices are muertible.
It follows by the equivalence theorem that $A C$ can be urittin as a product of elementary matrices since $A C$ is invertible.

Question 2.

a. (4 marks) Find the inverse of the matrix A using the inversion algorithm:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 5 \\
-2 & -2 & -11
\end{array}\right]
$$

$[A \mid I]=\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 5 & 0 & 0 & 0 \\ -2 & -2 & -11 & 0 & 0 & 1\end{array}\right] \sim_{2 R_{1}+R_{3}>R_{3}}\left[\begin{array}{cccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 5 & 0 & 1 & 0 \\ 0 & -2 & -9 & 2 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \sim \\
& \\
& 2 R_{2}+R_{3} \rightarrow R_{3}
\end{aligned} \quad\left[\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 5 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 2 & 1
\end{array}\right]
$$

$$
\begin{gathered}
0 \\
0
\end{gathered} A^{-1}=\left[\begin{array}{ccc}
-1 & -2 & -1 \\
-10 & -9 & -5 \\
2 & 2 & 1
\end{array}\right]
$$

b. (2 marks) Solve for x, y, z, where $\left[\begin{array}{lll}x & y & z\end{array}\right] A=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]$ using the A^{-1} found in part a.

$$
\begin{aligned}
{\left[\begin{array}{lll}
x & y & z
\end{array}\right] A A^{-1} } & =\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] A^{-1} \\
{\left[\begin{array}{lll}
x & y & z
\end{array}\right] } & =\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & -2 & -1 \\
-10 & -9 & -5 \\
2 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 & 4 & 2
\end{array}\right]
\end{aligned}
$$

c. $(2$ marks $)$ Find two elementary matrices E_{1} and E_{2} which satisfy $E_{2} E_{1} A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right]$.
from part a)
$F_{1}: I \sim 2 R_{1}+R_{3} \rightarrow R_{3}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]=E_{1}$
$E_{2}: I \sim 2 R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]=E_{2}$

