Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

Question 1. (5 marks) Consider the matrices A, B, C, all square and of the same size. Assume that the linear systems $A\mathbf{x} = 0$ and $B\mathbf{x} = 0$ have only the trivial solution and that C is row equivalent to B. Prove that AC can be written as a product of elementary matrices.

name: Y. Lamontagne

Since Ax=0 and Bx=0 have only the trivial solution then A and B are invertible by the equivalence theorem.

Since C is row equivalent to B = E; s.t. C = Ex EsE, B

O. AC = AEx. E.E.B is invertible since it is a product of invertible matrices by and since elementary matrices are invertible.

It follows by the equivalence theorem that AC can be written as a product of elementary matrices since AC is invertible.

Question 2.

a. (4 marks) Find the inverse of the matrix A using the inversion algorithm:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ -2 & -2 & -11 \end{bmatrix}$$

$$\begin{bmatrix} A & 1 & 1 \\ 0 & 1 & 5 \\ -2 & -2 & -11 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & -2 & -9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sim -R_3 + R_1 \rightarrow R_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 & -1 \\ -10 & -9 & -5 \\ 2 & 2 & 1 \end{bmatrix}$$

$$\sim A^{-1} = \begin{bmatrix} -1 & -2 & -1 \\ -10 & -9 & -5 \\ 2 & 2 & 1 \end{bmatrix}$$

b. (2 marks) Solve for x, y, z, where $\begin{bmatrix} x & y & z \end{bmatrix} A = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$ using the A^{-1} found in part a.

$$[x \ y \ z] AA^{-1} = [-1 \ 0 \ 1] A^{-1}$$

$$[x \ y \ z] = [-1 \ 0 \ 1] [-1 \ -2 \ -1]$$

$$[0 \ -9 \ -5]$$

$$= [3 \ 4] 2]$$

c. (2 marks) Find two elementary matrices E_1 and E_2 which satisfy $E_2E_1A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$.

from parta)
$$E_1: I \sim 2R_1 + R_3 \rightarrow R_3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = E_1$$