Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

a. If (1,0,0,0,0) and (2,0,0,0,0) are both solutions of a system of 13 linear equations then (0,1,0,0,0) ______ be another solution of the system.

Question 2.

a. (3 marks) Suppose A is an $m \times n$ matrix, B is an $n \times m$ matrix, and $BA = I_n$. Prove that if for some $\mathbf{b} \in \mathbb{R}^m$ the equation $A\mathbf{x} = \mathbf{b}$ has a solution, then that solution is unique.

b. (3 marks) Suppose A is an $m \times n$ matrix, C is an $n \times m$ matrix, and $AC = I_m$. Prove that the system $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.

Question 3. (3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. If A^2 is a symmetric matrix, then A is a symmetric matrix.

b. A matrix A is said to be *skew-symmetric* if $A^T = -A$. If A and B are skew-symmetric matrices such that AB = -BA then AB is skew-symmetric.

Bonus Question. (5 marks) Let A and B be $m \times n$ and $n \times m$ matrices, respectively. If m > n, show that AB is singular.