Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. If the sum of the second and fourth row of a 6×6 matrix A is equal to the last row, then $\operatorname{det}(A)$ \qquad be equal to zero.
Question 2. If A is an $n \times n$ matrix, the characteristic polynomial $c_{A}(x)$ of A is defined by $c_{A}(x)=\operatorname{det}(x I-A)$.
a. (3 marks) Find the eigenvalues λ of $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2\end{array}\right]$. That is, find the values of λ for which $c_{A}(\lambda)=0$.
b. (3 marks) Show that if A is a square matrix then A and A^{T} have the same characteristic polynomial.
c. (3 marks) Show that for any 2×2 matrix $A, c_{A}(x)=x^{2}-\operatorname{trace}(A) x+\operatorname{det} A$.

Question 3. (5 marks) Given det $A=\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=2 \quad ; \quad B=\left[\begin{array}{cccc}3 g+a & 3 h+b & 2 & 3 i+c \\ d+2 a & e+2 b & 3 & f+2 c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0\end{array}\right]$. Find det B.

