300ks, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

a. If A is a square matrix and $det(A + A^T) = 0$ then A ______ be singular.

Question 2. If *A* is an $n \times n$ matrix, the *characteristic polynomial* $c_A(x)$ of *A* is defined by $c_A(x) = \det(xI - A)$.

a. (3 marks) Show that if A is an $n \times n$ matrix then $c_{A^2}(x^2) = (-1)^n c_A(x) c_A(-x)$.

Question 3. (3 marks) Given $\det A = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 2, B = \begin{bmatrix} 3g + a & 3h + b & 2 & 3i + c \\ d + 2a & e + 2b & 3 & f + 2c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0 \end{bmatrix}$ and $\det B = 30$. Find $\det \left(5A^4(A^{-1})^T B^{-3} \operatorname{adj}(A) \right)$.

Question 3. (3 marks) If A is an an $n \times n$ matrix where $det(A) = x \neq 0$ then determine for which value(s) of x, if any, the matrix $A + adj(A^{-1})$ is invertible.

Question 4. (1 mark) Correctly and precisely state Cramer's Rule.

Bonus Question. (5 marks) Prove Cramer's Rule.