name: Y. Lamontogue

Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

- a. If A is a square matrix and $det(A + A^T) = 0$ then A **might** be singular.
- **Question 2.** If A is an $n \times n$ matrix, the *characteristic polynomial* $c_A(x)$ of A is defined by $c_A(x) = \det(xI A)$.
 - a. (3 marks) Show that if A is an $n \times n$ matrix then $c_{A^2}(x^2) = (-1)^n c_A(x) c_A(-x)$.

$$C_{A^2}(x^2) = det(x^2I - A^2)$$

 $= det((xI)^2 - A^2)$
 $= det((xI - A)(xI + A))$
 $= det(-1(xI - A)(-xI - A))$
 $= (-1)^m det((xI - A)(-xI - A))$
 $= (-1)^m det(xI - A) det(-xI - A)$
 $= (-1)^m C_A(x) C_A(-x)$

Question 3. (3 marks) Given
$$\det A = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 2, B = \begin{bmatrix} 3g + a & 3h + b & 2 & 3i + c \\ d + 2a & e + 2b & 3 & f + 2c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0 \end{bmatrix}$$
 and $\det B = 30$. Find $\det \left(5A^4(A^{-1})^T B^{-3} \operatorname{adj}(A) \right)$.

= 54 det
$$(A^{4}(A^{-1})^{T}B^{-3}adj(A))$$

= 54 det (A^{4}) det $(A^{-1})^{T}$ det (B^{-3}) det $(adj(A))$
= 54 (det A)4 det A^{-1} (det B)-3 (det A)4-1
= 54 24 $\frac{1}{24A}$ $\frac{1}{(det 0)^{3}}$
= 54 27 $\frac{1}{2}$ $\frac{1}{(30)^{3}}$ = $\frac{542}{(30)^{3}}$

Question 3. (3 marks) If A is an an $n \times n$ matrix where $\det(A) = x \neq 0$ then determine for which value(s) of x, if any, the matrix $A + \operatorname{adj}(A^{-1})$ is

invertible. For det
$$(A + ad)(A^{-1}) = \det(A + \det(A^{-1}(A^{-1})^{-1}))$$

$$= \det(A + \frac{1}{\det A})$$

$$= \det((1 + \frac{1}{\det A})A)$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= \det(A + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0 \quad \text{then} \quad 1 + \frac{1}{\det A} \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

$$= (1 + \frac{1}{\det A})^{n} \det A \neq 0$$

Question 4. (1 mark) Correctly and precisely state Cramer's Rule.

Given the system A = b where A is now If $det(A) \neq 0$ then the components of the various solution of the system $x_i = \frac{det A_i}{det A}$ where A_i is the matrix A with the ith column of A replaced by 9.

Bonus Question. (5 marks) Prove Cramer's Rule.