Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. If A is a square matrix and $\operatorname{det}\left(A+A^{T}\right)=0$ then A might \qquad be singular.
Question 2. If A is an $n \times n$ matrix, the characteristic polynomial $c_{A}(x)$ of A is defined by $c_{A}(x)=\operatorname{det}(x I-A)$.
a. (3 marks) Show that if A is an $n \times n$ matrix then $c_{A^{2}}\left(x^{2}\right)=(-1)^{n} c_{A}(x) c_{A}(-x)$.

$$
\begin{aligned}
C_{A^{2}}\left(x^{2}\right) & =\operatorname{det}\left(x^{2} I-A^{2}\right) \\
& =\operatorname{det}\left((x I)^{2}-A^{2}\right) \\
& =\operatorname{det}((x I-A)(x I+A)) \\
& =\operatorname{det}(-1(-x I+A)(x I+A)) \\
& =(-1)^{n} \operatorname{det}((-x I+A)(x I+A)) \\
& =(-1)^{n} \operatorname{det}(-x I+A) \operatorname{det}(x I+A) \\
& =(-1)^{n} C_{A}(-x) C_{A}(x)
\end{aligned}
$$

Question 3. (3 marks) Given $\operatorname{det} A=\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=2, B=\left[\begin{array}{cccc}3 g+a & 3 h+b & 2 & 3 i+c \\ d+2 a & e+2 b & 3 & f+2 c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0\end{array}\right]$ and $\operatorname{det} B=30$. Find $\operatorname{det}\left(5 A^{4}\left(A^{-1}\right)^{T} B^{-3} \operatorname{adj}(A)\right)$.

$$
=5^{4} \operatorname{det}\left(A^{4}\left(A^{-1}\right)^{\top} B^{-3} a d_{j}(A)\right)
$$

$=5^{4} \operatorname{det}\left(A^{4}\right) \operatorname{det}\left(A^{-1}\right)^{\top} \operatorname{det}\left(B^{-3}\right) \operatorname{det}(\operatorname{adj}(A))$
$=5^{4}(\operatorname{det} A)^{4} \operatorname{det} A^{-1}(\operatorname{det} B)^{-3}(\operatorname{det} A)^{4-1}$
$=5^{4} 2^{4} \frac{1}{\operatorname{det} A} \frac{1}{(\operatorname{det} B)^{3}} 2^{3}$
$=5^{4} 2^{7} \frac{1}{2} \frac{1}{(30)^{3}}=\frac{5^{4} 2^{6}}{(30)^{3}}$

Question 3. (3 marks) If A is an an $n \times n$ matrix where $\operatorname{det}(A)=x \neq 0$ then determine for which value (s) of x, if any, the matrix $A+\operatorname{adj}\left(A^{-1}\right)$ is
For $\operatorname{det}\left(A+\operatorname{adj}\left(A^{-1}\right)\right)=\operatorname{det}\left(A+\operatorname{det} A^{-1}\left(A^{-1}\right)^{-1}\right)$

$$
\begin{aligned}
& =\operatorname{det}\left(A+\frac{1}{\operatorname{det} A} A\right) \\
& =\operatorname{det}\left(\left(1+\frac{1}{\operatorname{det} A}\right) A\right)
\end{aligned}
$$

$$
D^{-1}=\frac{1}{\operatorname{det} \square} \operatorname{adj} \square
$$

$$
=\left(1+\frac{1}{\operatorname{det} A}\right)^{n} \operatorname{det} A \neq 0 \quad \text { then } 1+\frac{1}{\operatorname{det} A} \neq 0
$$

$$
\therefore \operatorname{det} A \neq-1
$$

Question 4. (1 mark) Correctly and precisely state Cramer's Rule.
Given the system $A \underline{x}=\underline{b}$ where A is $n \times n$. If $\operatorname{det}(A) \neq 0$ then the components of the unique solution of the system $x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}$ where A_{i} is the matrix A with the $i^{\text {th }}$ column of A replaced by y.
Bonus Question. (5 marks) Prove Cramer's Rule.

