Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. Two equivalent vectors s might have the same initial point.
b. If $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$, then \mathbf{v} \qquad might be equal to \mathbf{w}.
c. Let \mathbf{w} be orthogonal to both \mathbf{u} and \mathbf{v}. Then \mathbf{w} must be orthogonal to $\mathbf{u}+\mathbf{v}$.
d. Let \mathbf{u} be parallel to \mathbf{x}, and let \mathbf{v} be parallel to \mathbf{y}. Then $\mathbf{u}+\mathbf{v} \ldots$ might be parallel to $\mathbf{x}+\mathbf{y}$.
Question 2. (4 marks) A parallelogram has sides $A B, B C, C D$, and $D A$. Given $A(1,-1,2), C(2,1,0)$, and the midpoint $M(1,0,-3)$ of $A B$, find $\overrightarrow{B D}$.

$$
\begin{aligned}
& \text { (} \\
& \frac{1}{2} \overrightarrow{A B}=\overrightarrow{A M} \\
& \frac{1}{2} A \vec{B}=\overrightarrow{O M}-\overrightarrow{O A} \\
& \overrightarrow{A B}=2[(1,0,-3)-(1,-1,2)] \\
& \overrightarrow{A_{B}}=2(0,1,-5) \\
& A_{A}^{A}=(0,2,-10) \\
& O_{B}^{\prime}-O_{A}^{\prime}=(0,2,-10) \\
& O_{B}^{\prime}=(0,2,-10)+O_{A}^{\prime} \\
& O_{B} B=(0,2,-10)+(1,-1,2) \\
& \sigma_{B}=(1,1,-8) \\
& \therefore B=(1,1,-8) \\
& \overrightarrow{B C}=\overrightarrow{O C}-O \vec{O} \\
& =(2,1,0)-(1,1,-8) \\
& =(1,0,8)
\end{aligned}
$$

