Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2024: Quiz 10

name: Y. baunentagn c

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (5 marks) Given the plane $\mathscr{P}: 2x_1 - x_2 + 3x_3 = 5$, and the line $\mathscr{L}: \mathbf{x} = (3,0,4) + t(-1,1,1)$ where $t \in \mathbb{R}$, determine if the line is parallel to the plane, or heighted parallel nor orthogonal. If possible find the intersection between \mathscr{P} and \mathscr{L} , justify. Also if possible find the distance between \mathscr{P} and \mathscr{L} , justify.

Question 2. (5 marks) Given that $\mathcal{L}_1 : \mathbf{x} = (1,0,2) + t(-1,3,2)$, $\mathcal{L}_2 : \mathbf{x} = (1,1,-1) + t(-1,3,2)$ where $t \in \mathbb{R}$ that lie on the same plane \mathscr{P} . Find the equation of the line \mathscr{L} which lies on \mathscr{P} and is equidistant from \mathcal{L}_1 and \mathcal{L}_2 .

Bonus Question. (3 marks) Prove the Cauchy-Schwartz Inequality by using the squared norm of $||\vec{u}||\vec{v}-||\vec{v}||\vec{u}$ and $||\vec{u}||\vec{v}+||\vec{v}||\vec{u}$. $Or \quad M = \frac{1}{2}(P_1+P_2) = \frac{1}{2}((1_10,2)+(1_11,1)) = (1,\frac{1}{2},\frac{1}{2})$ (its on the line