Question 1. Given the line $\mathscr{L}:(x, y, z)=(2,2,3)+t(1,-1,-3)$ where $t \in \mathbb{R}$, the plane $\mathscr{P}: 3 x-2 y+2 z=7$ and the point $A(1,1,1)$.
a. (4 marks) Find parametric equations of the line which contains A, intersects \mathscr{L} and which is parallel to \mathscr{P}.

$$
\stackrel{\rightharpoonup}{A P}=\overrightarrow{O P}-\overrightarrow{O A}^{3}=(2+t, 2-t, 3-3 t)-(1,1,1)=(1+t, 1-t, 2-3 t)
$$

For $\mathcal{L}^{\prime} \| P$ we reed

$$
\begin{aligned}
\overrightarrow{A P} \cdot \underline{n} & =0 \\
0 & =(1+t, 1-t, 2-3 t) \cdot(3,-2,2) \\
0 & =3(1+t)-2(1-t)+2(2-3 t) \\
0 & =3+3 t-2+2 t+4-6 t \\
0 & =5-t \\
t & =5
\end{aligned}
$$

So $d=A^{\prime} P$ when $t=5$

$$
\begin{aligned}
& =A^{\prime} P \text { when } t=3 \\
& =(1+5,1-5,2-3(5))=(6,-4,-13)
\end{aligned}
$$

$\therefore \mathcal{L}^{\prime}: \underline{x}=(1,1,1)+t(6,-4,-13)$ where $t \in \mathbb{R}$.
b. (4 marks) Find parametric equations of the line which contains A and which intersects \mathscr{L} at a right angle.

For $\mathcal{L} \perp \mathcal{L}$ we need

$$
\begin{array}{rlrl}
A \vec{P} \cdot \underline{d} & =0 \\
0 & =(1+t, 1-t, 2-3 t) \cdot(1,-1,-3) \\
0 & =1(1+t)-(1-t)-3(2-3 t) \\
0 & =1+t-1+t-6+9 t \\
0 & =-6+11 t & \\
t & =\frac{6}{11} & \text { So } \begin{array}{l}
d
\end{array} & =A \vec{p} \text { when } t= \\
& =\left(1+\frac{6}{11}, 1-\frac{6}{11}, 2-3\left(\frac{6}{11}\right)\right) \\
15,4) \text { where } t \in \mathbb{R} & & =\left(\frac{17}{11}, \frac{5}{11}, \frac{4}{11}\right)
\end{array}
$$

$\therefore \mathcal{L}^{\prime}: \underline{x}=(1,1,1)+t(17,5,4)$ where $t \in \mathbb{R}$

Question 2. (4 marks) If $(3,-2,1)$ is a particular solution of $A \mathbf{x}=\mathbf{b}$ and $\mathbf{x}=t(1,3,-2)$ where $t \in \mathbb{R}$ is the solution set of $A \mathbf{x}=\mathbf{0}$. Give a geometric interpretation of the system $A \mathbf{x}=\mathbf{0}$ and its solution set. Determine whether $\mathbf{x}=(4,1,-1)+t(-2,-6,4)$ where $t \in \mathbb{R}$ is the solution set of $A \mathbf{x}=\mathbf{b}$, justify.
The system $A \underline{x}=\underline{Q}$ is comprised of a certain number of planes that all intersect at a common line. The normal (row of A) of each plane is orthogonal to the line of intersection.

\therefore by a theorem seen in class the solution set of $A \underline{x}=\underline{b}$ is

$$
\begin{aligned}
\underline{x}= & \text { particular } \\
& \text { solution of }+\underset{x}{ }+\underset{b}{ } \text { of } A x=6 \\
= & (3,-2,1)+t(1,3,-2) \quad t \in M P \\
\underline{x}= & (4,1,-1) \text { and } d_{2}=(-2,-4,4)=-2(1,3,-2)=-2 d_{1}
\end{aligned}
$$

Murther point on \mathcal{X} is when $t=1$ an \mathcal{L} and \mathcal{L}^{\prime} describe the same set.

