Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2024: Quiz 11

name: <u>Y. Lamontogne</u>

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the wor

Question 1. Given the line $\mathscr{L}: (x, y, z) = (2, 2, 3) + t(1, -1, -3)$ where $t \in \mathbb{R}$, the plane $\mathscr{P}: 3x - 2y + 2z = 7$ and the point A(1, 1, 1).

a. (4 marks) Find parametric equations of the line which contains A, intersects \mathcal{L} and which is parallel to \mathcal{P} .

For
$$Z \perp Z'$$
 we need
 $AP' \cdot d = 0$
 $0 = (1+t, 1-t, 2-3t) \cdot (1, -1, -3)$
 $0 = (1+t, 1-t, 2-3t) \cdot (1, -1, -3)$
 $0 = 1(1+t) - (1-t) - 3(2-3t)$
 $0 = 1+t - 1+t - 6+9t$
 $0 = -6 + 11t$
 $t = 6$
 $(1+5) + 1 - 6$
 $(1-1) + 1 - 3(2-3t)$
 $0 = -6 + 11t$
 $t = 6$
 $(1+5) + 1 - 6$
 $(1-1) + 1 - 3(2-3t)$
 $0 = -6 + 11t$
 $t = 6$
 $(1+5) + 1 - 6$
 $(1-1) + 1 - 3(2-3t)$
 $0 = -6 + 11t$
 $t = 6$
 $(1+5) + 1 - 6$
 $(1-1) + 1 - 3(2-3t)$
 $0 = -6 + 11t$
 $t = 6$
 $(1+5) + 1 - 6$
 $(1-7) + 5$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$
 $(1-7) + 1 - 7$

Question 2. (4 marks) If (3, -2, 1) is a particular solution of $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} = t(1, 3, -2)$ where $t \in \mathbb{R}$ is the solution set of $A\mathbf{x} = \mathbf{0}$. Give a

geometric interpretation of the system $A\mathbf{x} = \mathbf{0}$ and its solution of $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} = t(1, 3, -2)$ where $t \in \mathbb{R}$ is the solution set of $A\mathbf{x} = \mathbf{0}$. Give a geometric interpretation of the system $A\mathbf{x} = \mathbf{0}$ and its solution set. Determine whether $\mathbf{x} = (4, 1, -1) + t(-2, -6, 4)$ where $t \in \mathbb{R}$ is the solution set of $A\mathbf{x} = \mathbf{b}$, justify. The system $A \mathbf{x} = \mathbf{0}$ is comprised of a cirtain number of plaines that all intersect at a common line. The normal (row of A) of each plane is orthogonal to the line of intersection. oo by a theorem seen in class the solution set of Ax=10 is 5-L X = particular solution of + general solution Ax=b normal another point on X is when t=1 X = (4,1,-1) and $d_2 = (-2,-6,4) = -2(1,3,-2) = -2d_1$