Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

name: Y. Lamontogne

Question 1. Given **a** is a unit vector, the angle between **a** and **b** is $\frac{\pi}{6}$, and $||\mathbf{a} \times \mathbf{b}|| = 2$.

a. (3 marks) Find the volume of the parallelepiped defined by \mathbf{a} , \mathbf{b} and $\mathbf{a} \times \mathbf{b}$.

b. (3 marks) Find the surface area of the parallelepiped defined by \mathbf{a} , \mathbf{b} and $\mathbf{a} \times \mathbf{b}$.

Surface Area = 2 parallelog run determined by
$$\underline{\alpha}$$
 and \underline{b}
+ 2 rectangle determined by $\underline{\alpha}$ and $\underline{\alpha} \times \underline{b}$
+ 2 rectangle determined by $\underline{\alpha}$ and $\underline{\alpha} \times \underline{b}$
+ 2 rectangle determined by \underline{b} and $\underline{a} \times \underline{b}$
= 2 || $\underline{\alpha} \times \underline{b}$ || + 2 || $\underline{\alpha} \times \underline{b}$ || + 2 || \underline{b} || /| $\underline{a} \times \underline{b}$ ||
|| $\underline{\alpha} \times \underline{b}$ || = || $\underline{\alpha}$ || || \underline{b} || sin \underline{T}_{6}
2 = 1 || \underline{b} || = 2(2) + 2(1)(2) + 2(4)(2)
= 24
+ 2 rectangle determined by \underline{a} and $\underline{a} \times \underline{b}$
= 2 || $\underline{\alpha} \times \underline{b}$ || + 2 || \underline{b} || /| $\underline{a} \times \underline{b}$ ||
= 2(2) + 2(1)(2) + 2(4)(2)
= 24

Question 2. (3 marks) Simplify: $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v}) = \mathcal{U} \times (\mathcal{U} - \mathcal{V}) + \mathcal{V} (\mathcal{U} - \mathcal{V})$ = $\mathcal{U} \times \mathcal{U} - \mathcal{U} \times \mathcal{V} + \mathcal{V} \times \mathcal{U} - \mathcal{V} \times \mathcal{V}$ = $\mathcal{Q} + \mathcal{V} \times \mathcal{U} + \mathcal{V} \times \mathcal{U} + \mathcal{Q}$ = $\mathcal{Q} \times \mathcal{U} \times \mathcal{U} + \mathcal{V} \times \mathcal{U} + \mathcal{Q}$

Bonus Question (3 marks) Find the volume of the parallelepiped defined $\mathbf{a} = (1, 2, 3, 4)$, $\mathbf{b} = (1, 0, 1, 0)$ and $\mathbf{c} = (0, 1, 0, 1)$.