Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2024: Quiz 14

name: Y, Lamontagne

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work of the state of the state

Question 1. (4 marks) Determine whether $H = \{A \mid A \in \mathbb{M}_{n \times n} \text{ and the RREF of } A \text{ is } I\}$, is a subspace of $\mathbb{M}_{n \times n}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in H \text{ since the } RREF \text{ of } I \text{ is } I$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \in H \text{ since } \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \sim -R_1 \rightarrow R_2 \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin H \text{ since the } RREF \text{ of } O \text{ is not } I.$$

Let 5= {5,..., 5.3

Question 2. (4 marks) Prove: The span of a nonempty set S of vectors in V is the smallest subspace of V that contains S.

Suppose $\exists W$ subspace of V s.t. $W \not\subseteq span(s)$. This implies $\exists \underline{V} = C_1 \underbrace{S_1 + \dots + C_n \underbrace{S_n} \in span(s)}_{S_n} \underbrace{s.t.}_{W} \not\in W \not\subseteq W \not\subseteq W \not\subseteq W \not\subseteq V$ Since $S \subset W$ and W is subspace, it must be closed under scalar multiplication i.e. $C_1 \underbrace{S_1 \in W}_{S_1 \in W}$ and it is also closed under scalar multiplication i.e. $C_1 \underbrace{S_1 + \dots + C_n \underbrace{S_n}_{W} \in W}$

Question 3. (4 mapks) If v_1, \ldots, v_n are linearly dependent nonzero vectors, then at least one vector v_k is a unique linear combination of v_1, \ldots, v_{k-1} . Let $S_i = \{V_i, \cdots, V_i\}$ where $i \leq i \leq n$ $S_i = \{V_i, V_i\}$ is cither line indered or linedred if line and we consider the mext set S_3 (and so or). If S_2 is linedred then v_i is a multiple V_2 $S_2 = \{V_i, V_i\}$ is cither line indered or linedred if V_1, \ldots, v_i is a multiple V_2 $S_2 = \{V_i, V_i\}$ is cither line indered or $V_i \neq Q$. Vector V_i is a multiple V_2 $S_2 = \{V_i, V_i\}$ is cither line indered or $V_i \neq Q$. Vector V_i is a multiple V_2 $S_2 = \{V_i, V_i\}$ is cither line indered or $V_i \neq Q$. Vector V_i is a multiple V_2 $S_2 = \{V_i, V_i\}$ is cither line indered or $V_i \neq Q$. Vector V_i is a multiple V_2 $S_2 = \{V_i, V_i\}$ is cither line indered or $V_i \neq Q$. Vector V_i is a multiple V_2 . Can be written as a line comb. of the others) and S_i is line dependent or V_2 . Suppose there exists two ways to express V_i as a line comb. $O_2 = (C_1 - O_1)V_1 + \dots + (C_k - O_k)V_k + \dots + (C_{in} - O_{in})V_{in}$. $O_3 = C_1V_1 + \dots + O_kV_k + \dots + O_{in}V_{in}$. $O_4 = O_4 = O_4 = O_4 = V_4$. $O_5 = O_1V_1 + \dots + O_kV_k + \dots + O_{in}V_{in}$. $O_6 = O_6 = (C_1 - O_1)V_1 + \dots + (C_k - O_k)V_k + \dots + (C_{in} - O_{in})V_{in}$. $O_6 = O_{in} = O_1V_1 + \dots + O_kV_k + \dots + O_{in}V_{in}$. $O_6 = O_{in} = O_1V_1 + \dots + O_kV_k + \dots + O_{in}V_{in}$. $O_6 = O_{in} = O_1V_1 + \dots + O_kV_k + \dots + O_{in}V_{in}$. $O_6 = O_{in} = O_1V_1 + \dots + O_kV_k + \dots + O_{in}V_{in}$.