Question 1. ${ }^{1}$ (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. If A and B are square matrices of the same order, then $\operatorname{tr}(A B)$ \qquad be equal to $\operatorname{tr}(A) \operatorname{tr}(B)$.
Question 2. (3 marks) Find all matrices A that commute with $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

Question 3.(3 marks) Prove: If A is an $m \times n$ matrix and $A(B A)$ is defined, then B is an $n \times m$ matrix.

Question 4. (3 marks) Use the following properties of the trace:

1. $\operatorname{tr}(A \pm B)=\operatorname{tr}(A) \pm \operatorname{tr}(B)$
2. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
to show that there does not exists matrices A and B such that $A B-B A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Hint: Prove by contradiction.
[^0]
[^0]: ${ }^{1}$ From or modified from a John Abbott final examination

