Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. Let A be a square matrix. If $A \mathbf{x}=A \mathbf{y}$ for distinct \mathbf{x} and \mathbf{y}, then A \qquad be invertible.
Question 2. (5 marks) Show that every matrix A can be factored as $A=U R$ where U is invertible and R is in reduced row-echelon form.
Perform Gauss - Jordan on A
$A \sim k$ elementary row eperations $\sim R$ where R is the RREF of A. For each of the K elementary row operations we can obtain an elementary matrix E_{i} s.t.

$$
R=E_{k} \cdots E_{2} E_{1} A
$$

since elementary matrices are invertible then so is their product

$$
\begin{aligned}
\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} R & =\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} E_{k} \cdots E_{2} E_{1} A \\
\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} R & =I A \\
\cup R & =A
\end{aligned}
$$

where $V=\left(E_{n} \cdots E_{2} E_{1}\right)^{-1}$ an invertible matrix.

Question 3. (5 marks) Prove that if A and B are $m \times n$ matrices, then A and B are row equivalent if and only if A and B have the same reduced row echelon form.
$[\Rightarrow$] premise:
A and B are row equivalent
conclusion:
A and B have the same RREF
If we perform Gauss-Jordan on B :
$B \sim k$ elementary row operations $\sim R$ where R is the RREF of B.
and since A and B are row equivalent we have
$A \sim l$ elementary row operations $\sim B$
$\therefore A \sim l$ elem. vow op $\sim K$ elem. row op $\sim R$
$\therefore A$ and B have the same RREF
$[\in]$ premise:
A and B have the same RREF conclusion:
A and B are row equivalent If we perform Gauss-Jordan an A and B :
$A \sim k$ elementrony row operations $\sim R$
$B \sim l$ elementary row operations $\sim R$ the RREF is the same by the premise Then
$A \sim k$ elem. vow op $\sim R \sim$ the inverse elem. row op $\sim B$ in reverse order
$\therefore A$ and B are row equivalent

