Question 1. (4 marks) Show that $\operatorname{det}\left(I+2 A^{-1} B^{T}\right)=2^{n-1} \operatorname{det}\left(\frac{1}{2} A^{T}+B\right)$ where A and B are $n \times n$ matrices such that $\operatorname{det}(A)=2$.
since $\operatorname{det}(A) \neq 0$ then A is invertible by the equivalence theorem

$$
\text { LAS }=\operatorname{det}\left(A^{-1} A+2 A^{-1} B^{\top}\right)
$$

$$
=\operatorname{det}\left(2 A^{-1}\left(\frac{1}{2} A+B^{\top}\right)\right)
$$

$$
=\operatorname{det}\left(2 A^{-1}\right) \operatorname{det}\left(\frac{1}{2} A+B^{\top}\right)
$$

$$
=2^{n} \operatorname{det} A^{-1} \operatorname{det}\left(\left(\frac{1}{2} A+B^{\top}\right)^{\top}\right)
$$

$$
=2^{n} \frac{1}{\operatorname{drt} A} \operatorname{det}\left(\left(\frac{1}{2} A\right)^{r}+\left(B^{r}\right)^{\top}\right)
$$

$$
=2^{n} \frac{1}{2} \operatorname{det}\left(\frac{1}{2} A^{T}+B\right)
$$

$$
=2^{n-1} \operatorname{det}\left(\frac{1}{2} A^{\top}+\beta\right)=R H S
$$

Question 2. (3 marks) Without using the formula $\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}$. Prove: If $\operatorname{det}(A)=0$ then $\operatorname{det}(\operatorname{adj}(A))=0$. Hint: Prove by contradiction.
Suppose $\operatorname{det}(\operatorname{adj}(A)) \neq 0$. This implies that $\operatorname{adj}(A)$ is invertible by the equivalence theorem. w_{l} know

$$
\begin{aligned}
& \operatorname{Aadj}(A)=\operatorname{det}(A) I \\
& A \operatorname{adj}(A)=0 I \\
& \operatorname{Aadj}(A)=0 \\
& \begin{aligned}
A \operatorname{adj}(A)(\operatorname{adj}(A))^{-1} & =0(\operatorname{adj}(A))^{-1} \\
A I & =0 \\
A & =0
\end{aligned} \quad \Rightarrow \operatorname{adj}(A)=0 \text { sinct } \quad C_{i j}=0 \quad \forall i, j \\
&
\end{aligned} \quad \begin{array}{rlc}
& \therefore \operatorname{det}(\operatorname{adj}(A))=0 \quad
\end{array}
$$

Question 3. (3 marks) Let $P(2,0,-1), Q(-2,4,1)$, and $R(3,-1,0)$ be the vertices of a parallelogram with adjacent sides $P Q$ and $P R$. Find the other vertex S.

$$
\begin{aligned}
& \overrightarrow{P S}=\overrightarrow{P Q}+\overrightarrow{P \vec{R}} \\
& \overrightarrow{O S}-\overrightarrow{O P}=\overrightarrow{O Q}-\overrightarrow{O P}+\overrightarrow{O R}-\overrightarrow{O P} \\
& \overrightarrow{O S}=\vec{O}++\vec{Q}-\overrightarrow{O P} \\
& \overrightarrow{O S}=(-2,4,1)+(3,-1,0)-(2,0,-1) \\
& O_{O}^{3}=(-1,3,2) \\
& \therefore S(-1,3,2)
\end{aligned}
$$

