Question 1. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be pairwise orthogonal vectors.
a. (3 marks) Show that $\|\mathbf{u}+\mathbf{v}+\mathbf{w}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}$.
b. (3 marks) If \mathbf{u}, \mathbf{v}, and \mathbf{w} are all the same length, show that they all make the same angle with $\mathbf{u}+\mathbf{v}+\mathbf{w}$

Suppose $\|\underline{\underline{v}}\|=\|\underline{l}\|=\|\underline{w}\|=l$ which implies $\|\underline{u}+\underline{+}+\underline{w}\|=\sqrt{\|\underline{u}\|^{2}+\|y\|^{2}+\|\underline{\underline{u}}\|^{2}}=\sqrt{l^{2}+l^{2}+l^{2}}=\sqrt{3} l$

$$
\text { (1) } \begin{aligned}
& \underline{u} \cdot(\underline{u}+\underline{v}+\underline{w})=\|u\|\|\underline{u}+\underline{v}+\underline{u}\| \cos \theta_{1} \\
& \underline{u} \cdot \underline{u}+\underline{u} \cdot \underline{v}+\underline{u} \cdot \underline{w}=l \sqrt{3} l \cos \theta_{1} \\
&\|\underline{u}\|^{2}+\underline{v}+\underline{0}=\sqrt{3} l^{2} \cos \theta_{1} \\
& l^{2}=\sqrt{3} l^{2} \cos \theta_{1}
\end{aligned}
$$

$$
\frac{1}{\sqrt{3}}=\cos \theta_{1}
$$

(2) Similarly
$\underline{v} \cdot(\underline{u}+\underline{v}+\underline{w})=\|\underline{v}\|\|\underline{w}+\underline{v}+\underline{w}\| \cos \theta_{2}$
$\frac{1}{\sqrt{3}}=\cos \theta_{2}$

$$
\underline{w} \cdot(\underline{u}+\underline{v}+\underline{w})=\|\underline{w}\|\|\underline{w}+\underline{v}+\underline{w}\| \cos \theta_{3}
$$

$$
\frac{1}{\sqrt{3}}!\cos \theta_{3}
$$

Question 2. (3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.
a. If $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.

$$
\text { False, } \begin{aligned}
\text { Let } \begin{aligned}
\underline{u} & =(1,0) \\
\underline{v} & =(0,1) \\
\underline{w} & =(0,2)
\end{aligned} \quad \begin{aligned}
\underline{u} \cdot \underline{v} & =0 \\
\underline{w} \cdot \underline{w} & =0 \text { but } \underline{v} \neq \underline{w}
\end{aligned}
\end{aligned}
$$

b. If \mathbf{a} and \mathbf{b} are nonzero orthogonal vectors, then for every nonzero vector \mathbf{u}, we have $\operatorname{proj}_{\mathbf{a}}\left(\operatorname{proj}_{\mathbf{b}}(\mathbf{u})\right)=\mathbf{0}$.

True,

$$
\begin{aligned}
\text { LAS } & =\frac{\underline{a} \cdot p \cdot 0)_{\underline{b}} \underline{u}}{\underline{a} \cdot \underline{a}} \underline{a} \\
& =\frac{\underline{a} \cdot \frac{b \cdot u}{\underline{b}} \underline{b}}{\underline{a} \cdot \underline{a}} \underline{a} \\
& =\frac{\frac{b \cdot u}{b} \underline{a} \cdot \underline{b}}{\underline{a} \cdot \underline{a}} \underline{a}=\frac{\frac{b \cdot u}{b} \cdot \boldsymbol{b}}{a} \underline{a}=0 \underline{a}=\underline{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { LbS }=\|\underline{\underline{u}}+\underline{\underline{v}}+\underline{\underline{u}}\|^{2} \\
& =(\underline{u}+\underline{v}+\underline{w}) \cdot(\underline{u}+\underline{v}+w)
\end{aligned}
$$

$$
\begin{aligned}
& =\|\varepsilon\|^{2}+\|\underline{V}\|^{2}+\|\underline{W}\|^{2} \\
& =\text { HS }
\end{aligned}
$$

