Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2024: Quiz 10 Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the v	name:
Question 1. (5 marks) Given the plane $\mathscr{P}: 2x_1 - x_2 + 3x_3 = 5$, and the line $\mathscr{L}: \mathbf{x} = (3,0,4) + t(-1,1,1)$ parallel to the plane, orthogonal to the plane, or neither parallel nor orthogonal. If possible find the intersect if possible find the distance between \mathscr{P} and \mathscr{L} , justify.	where $t \in \mathbb{R}$, determine if the line is
Question 2. (5 marks) Given that $\mathcal{L}_1: \mathbf{x} = (1,0,2) + t(-1,3,2)$, $\mathcal{L}_2: \mathbf{x} = (1,1,-1) + t(-1,3,2)$ where $t \in$ the equation of the line \mathcal{L} which lies on \mathscr{P} and is equidistant from \mathcal{L}_1 and \mathcal{L}_2 .	$\mathbb R$ that lie on the same plane $\mathscr P.$ Find
Bonus Question. (3 marks) Prove the Cauchy-Schwartz Inequality by using the squared norm of $ \vec{u} \vec{v} - \vec{v} $	$ec{v} ec{u}$ and $ ec{u} ec{v}+ ec{v} ec{u}$.