Question 1. (5 marks) Find the distance between the line $\mathscr{L}:(x, y, z)=(1,3,0)+t(4,3,1)$ and the y-axis.

The equation of the line on the y-axis is $x=(0,0,0)+t(0,1,0)$.

$$
O \dot{P}_{0}=(1,3,0)
$$

$$
\underline{n}={\frac{d^{\prime}}{0}}^{\prime} \times \frac{d}{4}=\left(\left|\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right|,-\left|\begin{array}{ll}
0 & 4 \\
0 & 1
\end{array}\right|,\left|\begin{array}{ll}
0 & 4 \\
1 & 3
\end{array}\right|\right)=(1,0,-4)
$$

Question 2. Given two planes:

$$
\begin{aligned}
& \mathscr{P}_{1}: x+z=1 \\
& \mathscr{P}_{2}: x+z=1
\end{aligned}
$$

a. (1 mark) Give a point of intersection of the two planes, by inspection.

The point $(0,0,1)$ satisty both equations.
b. (1 mark) Give a geometrical argument to explain why the intersection of the two planes is a line.
$P_{1} \times P_{2}$ since $\underline{n}_{1} \nVdash \underline{n}_{2}$ because $\exists k$ sit. $\underline{n}_{2}=k \underline{n}_{1}$
c. (2 marks) Find the direction vector for the intersection of the two planes without solving for the solution set. Justify.

As seen in a theorem in class the lives must be orthegeral to both normals.

$$
\because \quad d=\frac{n_{1}}{1} \times \frac{n_{2}}{0}=\left(\left|\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right|,-\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|,\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\right)=(-1,-1,1)
$$

d. (1 mark) Find the solution set of the system of linear equations determined by \mathscr{P}_{1} and \mathscr{P}_{2} by only using part a) and part c). $\underline{x}=(0,0,1)+t(-1,-1,1)$ where $t \in \mathbb{R}$.

Bonus Question. (3 marks) Given a Yank plane segment defined as $\mathbf{x}=(1,0,2)+s(1,1,1)+t(2,1,3)$ where $(s, t) \in[-1,2] \times[-2,0]$. Find the area of the Yann plane segment.

$$
\begin{aligned}
& p \vee 0)_{n} \overrightarrow{O P}_{0}=\frac{n \cdot \overrightarrow{o p}}{\underline{n} \cdot \underline{n}} \underline{n} \\
& =\frac{(1,0,-4) \cdot(1,3,0)}{(1,0,-4) \cdot(1,0,-4)}(1,0,-4) \\
& =\frac{1}{17}(1,0,-4) \\
& \text { distance }=\| \text { pros.n } \text { fol }_{\text {d }}\|=\| \frac{1}{17}(1,0,-4)\left\|=\left|\frac{1}{17}\right|\right\|(1,0,-4) \| \\
& =\frac{1}{17} \sqrt{1+0+16}=\frac{\sqrt{17}}{17}
\end{aligned}
$$

