Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S8: Winter 2024: Quiz 13

name: _

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (3 marks) Determine whether the set $V = \mathcal{M}_{2\times 2}$ of all 2×2 matrices with the usual addition and scalar multiplication defined as $a \cdot X = aX^T$ is a vector space.

Question 2. (3 marks) Show that $\mathbf{x} = \mathbf{v}$ is the only solution of the equation $\mathbf{x} + \mathbf{x} = 2\mathbf{v}$ in a vector space *V*. Show every step, justify every step, and cite the axiom(s) used!!!

Question 3.¹ Let $V = \{(a,b) | a, b \in \mathbb{R}, b > 0\}$. And the addition in *V* is defined by $(a,b) \bigoplus (c,d) = (ad + bc, bd)$ and scalar multiplication in *V* is defined by $t \bigoplus (a,b) = (tab^{t-1}, b^t)$

a. (2 marks) If V is a vector space and $\mathbf{v} \in V$ find the additive inverse of \mathbf{v} .

b. (3 marks) Demonstrate whether the 7th axiom of vector spaces holds. That is, addition of scalars distributes over scalar multiplication, $(r+s) \odot \mathbf{v} = r \odot \mathbf{v} \bigoplus s \odot \mathbf{v}$.

¹From http://www.math.uwaterloo.ca/ jmckinno/Math225/Week1/Lecture1e.pdf

Bonus Question.

definition:² A group G is a set of elements satisfying the four conditions below, relative to some binary operation.

- 1. $\exists e \in G$ such that $\forall g \in G : e \cdot g = g \cdot e = g$. (Identity.)
- 2. $\forall x, y, z \in G : (x \cdot y) \cdot z = x \cdot (y \cdot z)$. (Associativity.)
- 3. $\forall x \in G, \exists y \in G \text{ such that } x \cdot y = y \cdot x = e.$ (Inverse.)
- 4. $\forall x, y \in G : x \cdot y \in G$. (Closure.)

where *e* is called the *identity*.

- a. (2 marks) Show that the identity is unique.
- b. (2 marks) Is a vector space a group?

 $^{^{2}} https://web.williams.edu/Mathematics/sjmiller/public_html/mathlab/public_html/handouts/GroupTheoryIntro.tex$