name: Y. Lamentagne

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the w

Question 1. (4 marks) Determine whether $H = \{(a, b) \mid a, b \in \mathbb{R} \text{ and } ab = 0\}$, is a subspace of \mathbb{R}^2

Question 2. (4 marks) Let V be the subspace of vectors parallel to the line $\mathbf{x} = (1, 2, 3) + t(1, 1, 1)$ where $t \in \mathbb{R}$, and let W be the subspace spanned by (1, 1, 0) and (0, 1, 1). Find a vector \mathbf{v} in V and a vector \mathbf{w} in W for which $\mathbf{v} + \mathbf{w} = (1, 0, 1)$

Question 3. (4 marks) Prove that in \mathbb{P}_2 every set with more than three vectors is linearly dependent.

Question 3. (4 marks) Prove that in
$$\mathbb{P}_2$$
 every set with more than three vectors is linearly dependent.

Let $P_1(x) = a_{01} + a_{01}x + a_{21}x^2$
 $P_n(x) = a_{02} + a_{12}x + a_{22}x^2$
 $P_n(x) = a_{0n} + a_{1n}x + a_{2n}x^2$ and $n \neq 3$
 $O + O \times + O \times^2 = C_1 p_1(x) + C_2 p_2(x) + \cdots + C_n p_n(x)$

$$\begin{bmatrix} a_{01} & a_{02} & \cdots & a_{0n} & 0 \\ a_{11} & a_{12} & \cdots & a_{1n} & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 \end{bmatrix}$$

Since $n > 3$ the system will have at least $n - 3$ parameters of not only the trivial solution. For linearly dependent.