Question 1. (5 marks) Find the values) of k, if any, for which the following system

$$
\left\{\begin{array}{rlrlr}
x- & z & =2 \\
-2 x+\left(k^{2}+2\right) y- & k z & =-2-3 k \\
3 x- & 9 y+\left(k^{2}+k-9\right) z & =2 k+2
\end{array} \quad\left[\begin{array}{cccc}
1 & -3 & -1 & 2 \\
-2 & k^{2}+2 & -k & -2-3 k \\
3 & -9 & k^{2}+k-9 & 2 k+2
\end{array}\right]\right.
$$

has
a. exactly one solutions,
b. infinitely many solutions,
c. no solutions.

Lets look at all values of k which make an entry vanish in the matrix.
$K=2$: the augmented matrix becomes

$$
\left[\begin{array}{cccc}
1 & -3 & -1 & 2 \\
0 & 0 & -4 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The system is consistent since no leading enter in constant column. And has infinitely many solutions since \#leading entries < \# variable

$$
K=-2:\left[\begin{array}{cccc}
1 & -3 & -1 & 2 \\
0 & 0 & 0 & 8 \\
0 & 0 & -4 & -8
\end{array}\right] \begin{aligned}
& \text { has no solution since it } \\
& \text { was a leading entry in } \\
& \text { constant column. }
\end{aligned}
$$

$$
K=-3:\left[\begin{array}{cccc}
1 & -3 & -1 & 2 \\
0 & 5 & 1 & 11 \\
0 & 0 & 0 & -10
\end{array}\right]
$$

$K \pm \pm 2,-3$ has a unique solution sine+leading entry in var. col $=$ *var.

Question 2.(5 marks) Show that the reduced row echelon form of $\left[\begin{array}{ccc}p & 0 & a \\ b & 0 & 0 \\ q & c & r\end{array}\right]$ where $a b c \neq 0$ is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
$a b c \neq 0$ implies $a \neq 0, b \neq 0, c \neq 0$

