\qquad

Question 1. ${ }^{1}$ (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. Let A be a square matrix such that not all entries are zero. All entries of $A A$ \qquad be equal to zero.
b. If B has a column of zeros and the product $A B$ is defined then $A B$ \qquad have a column of zeros.
c. If A has a row of zeros and the product $A B$ is defined then $A B$ \qquad have a row of zeros.

Question 2.(4 marks) Find all matrices A where

$$
A+3 A^{T}=\left[\begin{array}{cc}
12 & 2 \\
-10 & 4
\end{array}\right]
$$

Question 3.(3 marks) Prove: If $A B$ and $B A$ are both defined, then $A B$ and $B A$ are square matrices.

[^0]
[^0]: ${ }^{1}$ From or modified from a John Abbott final examination

