Question 1. (3 marks) Prove: If $A^{T} A=A$, then $A$ is symmetric and $A=A^{2}$.


Question 2.( 2 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.
a. If $A$ is a symmetric and skew-symmetric matrix then $A=0$.

True, premise:

$$
\begin{aligned}
& \text { - } A \text { is symmetric } A^{T}=A \\
& \text { - } A \text { is skicu-symenttric } A^{T}=-A
\end{aligned}
$$

$$
\text { By pusmist } \begin{aligned}
A & =-A \\
2 A & =0 \\
A & =0
\end{aligned}
$$

conclusion:

$$
A=0
$$

Question 3. ( 5 marks) Prove: If $A$ is a square matrix for which the system $A \mathbf{x}=\mathbf{b}$ has infintely many solutions for some column matrix $\mathbf{b}$ and $A$ is row equivalent to $B$ then $B \mathbf{x}=\mathbf{0}$ has infinitely many solutions.

## premise:

- $A \underline{x}=\underline{b}$ has $\infty$ many sol for some $b$ a
- $A$ is row equivalent to $B$


## conclusion:

$B_{\underline{x}}=\underline{0}$ has $\infty$ many solutions
By the equivalence theorem the RREF of $A$ is not $I$ since 14 . By a theorem seen in class then $R$ the RREF of $A$ must at least have a row of zeros because it is a spare matrix.
There exists a sequence of elemmitory row operations such that $B \sim K$ elsmantany row operations $\sim A$
sines
$\therefore \quad[B \mid O] \sim$ kelem.vow op. $\sim[A \mid O] \sim$ Gauss-Jovdan $\sim[R \mid O]$


Bonus. (3 marks) Prove: If $A$ is an $m \times n$ matrix and $B$ is an $n \times r$ matrix then $(A B)^{T}=B^{T} A^{T}$.

