Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S8: Winter 2024: Quiz 6 name: W

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531%**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (3 marks) Prove: If ATA = A, then A is symmetric and A = AZ,
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Question 2.(2 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the
statement is true provide a proof of the statement.

a. If A is a symmetric and skew-symmetric matrix then A = 0.
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Question 3. (5 marks) Prove: If A is a square matrix for which the system Ax = b has infintely many solutions for some column matrix b and A
is row equivalent to B then Bx = 0 has infinitely many solutions.
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Bonus. (3 marks) Prove: If A is an m x n matrix and B is an n x r matrix then (AB)? = BTAT.



