Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
If A is a 4×4 matrix and B is obtained from A by interchanging the first two rows and then interchanging the last two rows, then $\operatorname{det}(A)$ must be equal to $\operatorname{det}(B)$.
Question 1. (4 marks)Find all the values of x for which

$$
\begin{aligned}
& \left|\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & x & x \\
1 & x & 0 & x \\
1 & x & x & 0
\end{array}\right|=-6 \\
& -6=a_{11} c_{11}+a_{12} c_{12}+a_{13} C_{13}+a_{14} c_{12} \\
& -6=-\left|\begin{array}{lll}
1 & x & x \\
1 & 0 & x \\
1 & x & 0
\end{array}\right|+\left|\begin{array}{lll}
1 & 0 & x \\
1 & x & x \\
1 & x & 0
\end{array}\right|-\left|\begin{array}{lll}
1 & 0 & x \\
1 & x & 0 \\
1 & x & x
\end{array}\right| \\
& -6=-[a_{21} c_{21}+\overbrace{a_{22} c_{22}}^{c_{2}}+a_{22} c_{23}]+[a_{11} c_{11}+\overbrace{a_{12} c_{22}}^{0}+a_{13} c_{13}]-[a_{a_{11} c_{11}}^{0}+\overbrace{a_{12} c_{12}}^{0}+a_{13} c_{13}] \\
& -6=-\left[-\left|\begin{array}{ll}
x & x \\
x & 0
\end{array}\right|-\left|\begin{array}{|l}
1 \\
1 \\
1
\end{array}\right|\right. \\
& -6=-x^{2}-x^{2}-x^{2} \\
& -6=-3 x^{2} \\
& 2=x^{2} \\
& x= \pm \sqrt{2}
\end{aligned}
$$

Question 2. (2 marks) Find b if

$$
\left|\begin{array}{llll}
1 & 2 & 3 & x \\
1 & 3 & 4 & y \\
0 & 2 & 3 & z \\
0 & 0 & 3 & 4
\end{array}\right|=a x+b y+c z+d
$$

If we do a cofactir expansion along the $4^{\text {th }}$ colon there will only one cofacter contributing to the coefficient of y.

$$
\begin{aligned}
00{ }_{y} C_{24} & =y(-1)^{2+4}\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{array}\right|=3!y \\
\quad 0 \quad b & =3!=6
\end{aligned}
$$

Question 3. (5 marks) Only use elementary operations to show that

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(b-a)(c-a)(c-b) \\
& \begin{aligned}
\text { LbS }= & -a R_{1}+R_{2} \rightarrow R_{2} \\
& -a^{2} R_{1}+R_{3} \rightarrow R_{3}\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & b-a & c-a \\
0 & b^{2}-a^{2} & c^{2}-a^{2}
\end{array}\right|, ~
\end{aligned} \\
& =1(b-a)[(c-a)(c+a)+(c-a)(b+a)] \\
& =(b-a)(c-a)[c+a-(b+a)] \\
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & b-a & c-a \\
0 & (b-a)(b+a) & (c-a)(c+a)
\end{array}\right| \\
& \longrightarrow-(b+a) R_{2}+R_{3}-1 R_{3}\left|\begin{array}{ccc}
0 & b-a & c a a \\
0 & 0 & (c-a)(c+a)-(c-a)(b+a)
\end{array}\right| \\
& =(b-a)(c-a)(c-b)
\end{aligned}
$$

