Question 1. (4 marks) Let $A$ and $B$ be two $3 \times 3$ matrices such that $\operatorname{det}(A)=4$ and $\operatorname{det}(B)=-2$. Find $\operatorname{det}\left(4 B^{-1} A^{-1}+\operatorname{adj}(A B)\right)$.
since $\operatorname{det}(A) \neq 0 \neq \operatorname{det}(B), A$ and $B$ are invertible by the equivalence theorem.
$\therefore A B$ is invertible because it is the product of invertible matrices
$\therefore(A B)^{-1}=\frac{1}{\operatorname{det}(A B)} \operatorname{ad} ;(A B)$
$\operatorname{adj}(A B)=\operatorname{det}(A B)(A B)^{-1}=\operatorname{det}(A) \operatorname{det}(B) B^{-1} A^{-1}=-8 B^{-1} A^{-1}$
$\therefore \operatorname{det}\left(4 B^{-1} A^{-1}+(-8) B^{-1} A^{-1}\right)$
$=\operatorname{det}\left(-4 B^{-1} A^{-1}\right)$
$=(-4)^{3} \operatorname{det}\left(B^{-1}\right) \operatorname{det}\left(A^{-1}\right)$
$=(-4)^{3} \frac{1}{\operatorname{det} B} \frac{1}{\operatorname{dit} A}=(+4)^{3^{2}} \frac{1}{\Delta 2} \frac{1}{4}=8$

Question 2. (3 marks) Let $A$ be a $n \times n$ matrix, such that $n$ is odd if $A^{2} A^{T}+A^{T} A^{2}=0$, show that the system $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions.

$$
\begin{aligned}
A^{2} A^{\top}+A^{\top} A^{2} & =0 \\
A^{2} A^{\top} & =-A^{\top} A^{2} \\
\operatorname{det}\left(A^{2} A^{\top}\right) & =\operatorname{det}\left(-A^{\top} A^{2}\right) \\
\operatorname{det}\left(A^{2}\right) \operatorname{det}\left(A^{\top}\right) & =(-1)^{n} \operatorname{det}\left(A^{\top} A^{2}\right) \\
(\operatorname{det} A)^{2} \operatorname{det} A & =-1 \operatorname{det}\left(A^{\top}\right) \operatorname{det}\left(A^{2}\right) \text { since } n \text { is } \operatorname{add} \\
(\operatorname{det} A)^{3} & =-\operatorname{det} A(\operatorname{det} A)^{2} \\
(\operatorname{det} A)^{3} & =(\operatorname{det} A)^{3}
\end{aligned}
$$

$\therefore \operatorname{det} A=0 \quad \therefore$ by the equivalence theorem $A x=0$ does not only have the trivial solution.

Question 3.(3 marks) Given $P(2,3,-2)$ and $Q(7,-4,1)$. Find the point on the line segment connecting the points $P$ and $Q$ that is $\frac{3}{4}$ of the way from $P$ to $Q$.
sketch:


$$
\begin{aligned}
& \overrightarrow{O R}=\overrightarrow{O P}+\frac{3}{4} \overrightarrow{P Q} \\
& \overrightarrow{O R}=\overrightarrow{O P}+\frac{3}{4}[\overrightarrow{O Q}-\overrightarrow{O P}] \\
& O R=\frac{1}{4} \overrightarrow{O P}+\frac{3}{4} \vec{O} \\
& O \vec{O}=\frac{1}{4}(2,3,-2)+\frac{3}{4}(7,-4,1) \\
& O \overrightarrow{O R}=\left(\frac{23}{4},-\frac{9}{4}, \frac{1}{4}\right) \\
& \therefore R\left(\frac{23}{4},-\frac{9}{4}, \frac{1}{4}\right)
\end{aligned}
$$

