Question 1. (4 marks) Let A and B be two 3×3 matrices such that det(A) = 4 and det(B) = -2. Find $det(4B^{-1}A^{-1} + adj(AB))$.

name: Y.Lamontagne

since det(A) + 0 + det(B), A and B are invertible by the equivalence theorem.

. AB is invertible because it is the product of invertible matrices

...
$$(AB)^{-1} = \frac{1}{\det(AB)}$$
 and $\int_{AB}^{AB} (AB)$

$$det(AB)$$
 $det(AB)^{-1} = det(A)det(B)B^{-1}A^{-1} = -8B^{-1}A^{-1}$
 $adj(AB) = det(AB)(AB)^{-1} = det(A)det(B)B^{-1}A^{-1} = -8B^{-1}A^{-1}$

=
$$(-4)^3$$
 det (15") det (14) = $(-4)^3$ $\frac{1}{4}$ = 8

Question 2. (3 marks) Let A be a $n \times n$ matrix, such that n is odd if $A^2A^T + A^TA^2 = 0$, show that the system $A\mathbf{x} = \mathbf{0}$ has non-trivial solutions.

$$A^2A^T + A^TA^2 = 0$$

$$A^2A^T : -A^1A^L$$

 $(\det A)^2 \det A = -1 \det(A^T) \det(A^2)$ since n is odd

of det A=0 of by the equivalence theorem Ax=0 does not only have the trivial solution.

Question 3.(3 marks) Given P(2,3,-2) and Q(7,-4,1). Find the point on the line segment connecting the points P and Q that is $\frac{3}{4}$ of the way from P to Q.

$$\vec{OR} = \vec{OP} + \frac{3}{4}\vec{PQ}$$

$$\vec{OR} = \vec{OP} + \frac{3}{4}[\vec{OQ} - \vec{OP}]$$

$$\vec{OR} = \frac{1}{4}\vec{OP} + \frac{3}{4}\vec{OQ}$$

$$\vec{OR} = \frac{1}{4}(2, 3, -2) + \frac{3}{4}(7, -4, 1)$$

$$\vec{OR} = (\frac{23}{4}, -\frac{9}{4}, \frac{1}{4})$$

$$\vec{OR} = (\frac{23}{4}, -\frac{9}{4}, \frac{1}{4})$$