Question 1. (4 marks) Let \mathbf{u} be a unit vector, and let \mathbf{v} be a vector such that $\|\mathbf{v}\|=\sqrt{6}$, and $\mathbf{u} \cdot \mathbf{v}=-\frac{1}{2}$. Find $\|2 \mathbf{u}-3 \mathbf{v}\|$.

$$
\begin{aligned}
\|2 \underline{u}-3 \underline{v}\|^{2} & =(2 \underline{u}-3 \underline{v}) \cdot(2 \underline{u}-3 \underline{v}) \\
& =(2 \underline{u})(2 \underline{u})-(2 \underline{u}) \cdot(3 \underline{v})-(3 \underline{v}) \cdot(2 \underline{u})+(3 \underline{v}) \cdot(3 v) \\
& =4 \underline{u} \cdot \underline{u}-6 \underline{v} \cdot \underline{v}-6 \underline{u}+9 \underline{v} \cdot \underline{v} \\
& =4\|\underline{u}\|^{2}-6 s \cdot v-6 \underline{v}+9\|v\|^{2} \\
& =4(1)^{2}-12 \underline{u} \cdot \underline{v}+9(\sqrt{6})^{2} \\
& =58-12\left(-\frac{1}{2}\right) \\
& =64
\end{aligned}
$$

$\therefore 112 \underline{u}-3 \underline{v} \|=\sqrt{64}=8$

Question 2.(3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.
a. If $\mathbf{u} \cdot \mathbf{v}=0$, then either $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.

$$
\begin{array}{r}
\text { False, }\left(\frac{t}{} \underline{u}=(1,0) \text { and } \underline{v}=(0,1) \text {, wo have that } \underline{u} \cdot \underline{v}=0\right. \\
\text { but } \underline{u} \neq \underline{0} \text { and } \underline{v} \neq 0
\end{array}
$$

b. If \mathbf{a} and \mathbf{u} are nonzero vectors, then $\operatorname{proj}_{\mathbf{a}}\left(\operatorname{proj}_{\mathbf{a}}(\mathbf{u})\right)=\operatorname{proj}_{\mathbf{a}}(\mathbf{u})$.

True, $L H S=\frac{\underline{a} \cdot \operatorname{proj}_{\underline{a}}(\underline{u})}{\underline{a} \cdot \underline{a}} \underline{a}$

$$
=\frac{\underline{a} \cdot \frac{\underline{a} \cdot \underline{u}}{\underline{a}} \underline{a}}{\underline{a} \cdot \underline{a}} \underline{a}
$$

$$
=\frac{\underline{a} \cdot \underline{u}}{\underline{a} \cdot \underline{a}} \frac{\underline{a} \cdot \underline{a}}{\underline{a} \underline{\underline{a}}} \underline{a}
$$

$$
=\frac{\underline{a} \cdot \underline{u}}{\underline{a} \cdot \underline{a}} \underline{a}
$$

$=P r o j \underline{a}^{\underline{u}}$

