Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S8: Winter 2024: Quiz 6 Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.
Question 1. (3 marks) Prove: If $A^T A = A$, then A is symmetric and $A = A^2$.
Question 2. (2 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.
a. If A is a symmetric and skew-symmetric matrix then $A = 0$.
Question 3. (5 marks) Prove: If A is a square matrix for which the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for some column matrix \mathbf{b} and A is row equivalent to B then $B\mathbf{x} = 0$ has infinitely many solutions.
Bonus. (3 marks) Prove: If A is an $m \times n$ matrix and B is an $n \times r$ matrix then $(AB)^T = B^T A^T$.