Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2025: Quiz 3 name: J_L@LOZL@AL

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**, You must show all your work, the correct answer is worth | mark the remaining marks are given for the work.

Question 1. (3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the
statement is true provide a proof of the statement.

a. If A is row equivalent to a product of elementary matrices, then the system Ax = b has a unique solution for all b.
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Question 2. (5 marks) Solve for the matrix X in the following equation:
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Question 3. (3 marks) Let A be an n X n matrix such that A” = nA — (n — 1)I where n # 1. Show that A is invertible, and find A~ in terms of A
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Question 4. (5 marks) Express
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and A~! as a product of elementary matrices.
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