Question 1. (3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. If A is any skew-symmetric matrix then A^2 is skew-symmetric matrix.

Question 2. (5 marks) Let A and B be two 3×3 matrices such that $det(A) = \begin{vmatrix} a+2b & c & b \\ d+2e & f & e \\ g+2h & i & h \end{vmatrix} = -2$ where $a,d,g \neq 0$, and det(B) = 3. Find the

following: $adg \begin{vmatrix} 2 & 2 & 2 \\ \frac{b}{a} & \frac{e}{d} & \frac{h}{g} \\ \frac{c}{a} & \frac{f}{d} & \frac{i}{g} \end{vmatrix}$.

Question 3. (3 marks) Prove that if $A^T A = A$, then A is symmetric and $A = A^2$.

Question 4. (5 marks) If A is an $n \times n$ matrix, the *characteristic polynomial* $c_A(x)$ of A is defined by $c_A(x) = \det(xI - A)$.

- a. (5 marks) Find the eigenvalues λ of $A = \begin{bmatrix} 2 & 2 & -2 \\ 1 & 3 & -1 \\ -1 & 1 & 1 \end{bmatrix}$. That is, find the values of λ for which $c_A(\lambda) = 0$.
- b. (3 marks bonus) Find the eigenvector for a non-zero eigenvalue found in part a. That is, find a non-trivial solution \mathbf{x} for each λ where $A\mathbf{x} = \lambda \mathbf{x}$.