Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2025: Quiz 6

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

Question 1. Consider the lines \mathscr{L} : $\begin{cases} x = kt + 7\\ y = t - 3\\ z = 3t + 4 \end{cases}$, $t \in \mathbb{R}$ and the plane \mathscr{P} : 3x + 4z = 7

a. (3 marks) Determine the values of k, if any, for which \mathcal{L} is parallel to \mathcal{P} .

b. (5 marks) If k = 1 find the points on the line \mathcal{L} that are 3 units away from the plane \mathcal{P} .

name: .

Question 2. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If the relationship $\text{proj}_{\mathbf{a}}(\mathbf{u}) = \text{proj}_{\mathbf{a}}(\mathbf{v})$ hold for some nonzero vector \mathbf{a} , then $\mathbf{u} = \mathbf{v}$.

Question 3. (2 marks) Find the parametric equation of the plane which is orthogonal to both $\mathcal{P}_1: x+y+z=1$ and $\mathcal{P}_2: x+2y+z=3$ and passes through the origin.

Question 4. (3 marks) Consider the system with equations: $x+y+z=b_1$, $x+2y+cz=b_2$ and $x+3y+dz=b_3$ where b_1 , b_2 , b_3 , c, d are fixed real values, P(1,1,1) satisfies all three equations and the solution set of the corresponding homogeneous linear system is $\mathbf{x} = t(2, -1, -1)$ where $t \in \mathbb{R}$.

Using a clearly labelled sketch give a geometrical interpretation of the linear system and its solution set, and the corresponding homogeneous linear system and its solution set.