Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S1: Winter 2025: Quiz 6

name: <u>V. Lamontagne</u>

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. Consider the lines
$$\mathscr{L}$$
:
$$\begin{cases} x = kt + 7 \\ y = t - 3 \\ z = 3t + 4 \end{cases}$$
, $t \in \mathbb{R}$ and the plane \mathscr{P} : $3x + 4z = 7$

a. (3 marks) Determine the values of k, if any, for which \mathcal{L} is parallel to \mathcal{P} .

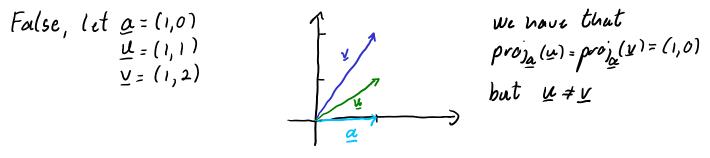
$$\mathcal{L}: \underbrace{\mathbf{x}}_{i} = (7, -3, 4) + t(\kappa_{i}, 1, 3) \\ \underbrace{\mathbf{x}}_{i} = (3, 0, 4) \\ \underbrace{\mathbf{d}}_{i} = (\kappa_{i}, 1, 3) \\ \underbrace{\mathbf{d}}_{i} = (\kappa_{i}, 1, 3) \\ \mathbf{d}_{i} = (\kappa_{i},$$

b. (5 marks) If k = 1 find the points on the line \mathcal{L} that are 3 units away from the plane \mathcal{P} .

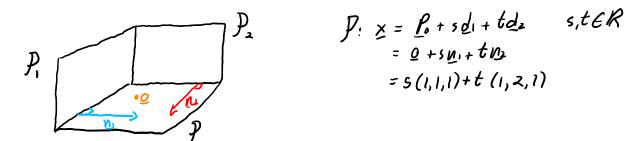
Since
$$k \neq -4$$
, the \mathcal{L} and \mathcal{P} are not paralle(
on the plane
 $P(1,0,1)$
 $P(1,0,0,1)$
 $P(1,0,1)$
 $P(1,$

Question 2. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If the relationship $\text{proj}_{\mathbf{a}}(\mathbf{u}) = \text{proj}_{\mathbf{a}}(\mathbf{v})$ hold for some nonzero vector \mathbf{a} , then $\mathbf{u} = \mathbf{v}$.



Question 3. (2 marks) Find the parametric equation of the plane which is orthogonal to both $\mathcal{P}_1: x+y+z=1$ and $\mathcal{P}_2: x+2y+z=3$ and passes through the origin.



Question 4. (3 marks) Consider the system with equations: $x+y+z=b_1$, $x+2y+cz=b_2$ and $x+3y+dz=b_3$ where b_1 , b_2 , b_3 , c, d are fixed real values, P(1,1,1) satisfies all three equations and the solution set of the corresponding homogeneous linear system is $\mathbf{x} = t(2, -1, -1)$ where $t \in \mathbb{R}$.

Using a clearly labelled sketch give a geometrical interpretation of the linear system and its solution set, and the corresponding homogeneous linear system and its solution set.

We notice that the three	equations are planes in R ³ with normals
n = (1, 1, 1) The three plan.	es have different inclinations since the normals are teach other
$M_2 = (1, 2, C) \text{not my ltiples of}$	
$\underbrace{N_{3}}_{12} = (1, 3, d)$	$x^{+3y} + dz = b_{3} + 2y + cz = b_{2}$
x+3y+dz=0 x+29	
the na na	La ray na
x+y+z=0	x+y+z=b,
$\frac{\partial}{\partial t} = (a_1 t_1^{-1})$	d = (2, -1, -1) $x + y + z = 0$
(opp)	
$z : \underline{x} = t(2, -1, -1)$	$\mathcal{L}: \underline{x} = (1, 1, 1) + t (2, -1, -1)$